Experimental and \textit{ab initio} study of the structural and optical properties of ZnO coatings: Performance of the DFT+U approach

Agustín Apaolaza1, Diego Richard1,2, Matías R. Tejerina2,3,*

1Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), calle 115 y 47 (1900) La Plata, Argentina
2Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), CIC-CONICET, Camino Centenario y 506, CC 49 (B1897ZCA) M.
3Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Av 1 y 47 (1900) La Plata, Argentina

Received 8 May 2020; Received in revised form 5 October 2020; Accepted 31 October 2020

Abstract

In this work, ZnO coatings were produced by the spray-pyrolysis technique and characterized by scanning electron microscopy, X-ray diffraction and optical transmittance spectroscopy. The experimental results were compared to predictions obtained from electronic-structure calculations based on the Density Functional Theory plus U (DFT+U) approach. To this purpose, the 2H, 4H and 6H polytypes of ZnO were theoretically analysed, and DFT+U was assessed for the calculation of structural, electronic and optical properties of the hexagonal ZnO structures. We found that DFT+U is an effective and accurate method that combined with experimental measurements, allows a deeper insight about the coatings of the wurtzite (2H) phase synthesized in the laboratory. This comprehensive study of the pure ZnO is the first step towards the study of more complex ZnO-based coatings.

Keywords: ZnO, structure, optical properties, electronic-structure calculations

I. Introduction

Zinc oxide (ZnO) is an important semiconductor with broad applications in technological devices such as solar cells, optical filters, and gas sensors, among many others [1–3]. Processed as thin films and coatings, ZnO is widely studied for applications in optoelectronics [4–7]. To enhance material performance in such applications, the study of its elastic and optical properties is of paramount importance. In this sense, in the last decade many experimental investigations have addressed the different structural and optical properties of pure and doped ZnO systems [3–18]. As a general remark, these investigations frequently report how the material band gap energy (E_g) and its elastic moduli depend on different parameters related to the processing method.

On the other hand, the theoretical description of the ZnO properties using computational methods based on Density Functional Theory (DFT) presents some challenges. In particular, it is well known that the prediction of E_g using the most common approximations for the exchange and correlation energy underestimates the experimental value (the “band gap problem” [19,20]). Considering this, many DFT approaches have been proposed to improve the predictions of E_g in ZnO, and related electronic properties [20–26]. Among them, the semiempirical methods that include a Hubbard parameter U in orbitals of the constituent atoms of the system (DFT+U approach) have demonstrated to be accurate in predicting these electric properties of ZnO and less computationally expensive than other methods [20,24–29]. In this case, the choice of the U parameter requires detailed studies of its incidence in other properties of ZnO besides E_g [24,25,27,30]. Based on its good performance in the pure compound, the DFT+U approach has also been proposed to model the case of ZnO doped with transition metals and lanthanide atoms [28,29,31–36]. So, nowadays, investigations that combine experimental determinations and DFT+U predictions are quite common, because this combination allows a deeper understanding of the materials through the relation of the
observed properties and the modelling of their origins [34,36–40].

In this work, we analyse the performance of the DFT and DFT+U methods to simultaneously describe the structural, electronic and optical properties of the 2H, 4H and 6H polytypes of ZnO. We aim to assess the DFT+U method as a tool for predicting and describing the different properties of wurtzite ZnO phase coatings prepared by spray-pyrolysis (SP) in the laboratory. To the best of our knowledge, the implementation of DFT+U method to analyse the 4H and 6H polytypes is reported for the first time. In this paper, we firstly present a characterization of the SP manufactured ZnO coatings. To this end, scanning electron microscopy (SEM), X-ray diffraction (XRD), and optical transmittance spectroscopy were employed. Then, we have performed a wide range of DFT and DFT+U predictions for the properties in polytypes of bulk ZnO and we compare them with the results obtained for the manufactured coatings and also with the literature. Hence, we investigated the electronic and optical properties by performing measurements and calculations of the transmittance spectra and E_g. Regarding the structure, we covered different scales of the ZnO system, going from the crystallographic structure (lattice parameters, elastic constants) to the atomic local environments. In this respect, we focused on the electric field gradient (EFG) at each atomic site of the structure because it is highly sensitive to small changes in the electronic charge density close to that site. Then, the EFG is a very good indicator of the prediction accuracy at the nanoscopic scale.

All these structural and electronic properties are of interest in the fabrication processes of ZnO-based thin films and coatings. Moreover, this comprehensive analysis of the ZnO properties, by combining experimental and ab initio techniques, is important as a key starting point for future research in more complex ZnO-based materials, such as doped ZnO coatings.

II. Materials and methods

2.1. Experimental procedure

The ZnO coatings were produced by spray pyrolysis (SP) starting from a precursor solution containing zinc acetate dihydrate (ZAD), acetylacetone (AcA) as a stabilizer and ethanol as a solvent [41]. The precursor solution was prepared by dissolving 5 g of ZAD in a mixture composed of 50 ml of ethanol and 5 ml of AcA. Then, the sol was stirred for 30 min at room temperature. For the SP coatings, microscope soda-lime glass slides were used as substrates, which were previously washed with a detergent solution, ethanol, acetone and dried at 80°C. The precursor solution was manually atomized through a conventional airbrush, using 3.0 bar pressurized air. The application onto the glass substrate, heated at 450°C, was carried out in three steps to generate zones of different thickness (called Z1, Z2 and Z3). At first, 19.0 ml of the solution was applied over the whole substrate surface, then the substrate was partially masked leaving two thirds free, and the other 19.0 ml of solution was applied over the uncovered region. After this, the procedure was repeated, we covered half of the remaining surface and applied 13.4 ml of the solution to the exposed surface (one-third of the total surface). As a result, the region Z1 was sprayed with 6.3 ml, the region Z2 with 15.8 ml and Z3 with 29.2 ml of the solution, so different thicknesses were obtained over the same substrate. This could be confirmed with naked-eye inspection (Fig. 1).

![Figure 1. Image of ZnO coatings onto the substrate with three zones: Z1, Z2, and Z3](image)

The resulting coatings were characterized by SEM (JEOL JCM-6000 instrument), XRD (BRUKER D2 Phaser instrument), and optical transmittance spectroscopy (Cary 5000, Agilent Technologies). These measurements allowed an analysis of the coating thickness and morphology at the micrometric scale, its crystal structure and the estimation of E_g.

2.2. Ab initio calculations

We performed all our calculations with the open-source Quantum Espresso (QE) package, which is based on pseudopotentials and plane waves [42]. Generalized gradient approximation (GGA) exchange-correlation functional has been used, with the Perdew-Burke-Ernzerhof (PBE) parametrization [43].

As the starting ZnO structures, we considered those of the wurtzite (2H) type reported by Wyckoff [44], which is available at the crystallography open database (COD ID 9008877) [45], and the 4H and 6H polytypes reported by Zagorac et al. [22]. The 2H structure contains two formula units per unit cell, and the Zn atoms are tetrahedrally coordinated with O atoms (Fig. 2a). The 4H and 6H correspond to stacking variants of the wurtzite structure (Figs. 2b and 2c). They were recently reported as theoretical stable structures of ZnO that may allow a fine-tune of electronic properties [21,22,46]. The three structures were fully optimized at DFT and DFT+U levels. For the last, the PBE functional was complemented by adding ad hoc Hubbard potentials on the d orbitals of Zn atoms and the p orbitals of O atoms. Considering previous investigations, we used U parameters of 12 and 6.5 eV for Zn and O, respectively [25,27,29].

Calculations were performed using a Monkhorst-Pack grid of $6 \times 6 \times 6$ k-points and a kinetic energy cut-off of 100 Ry. The optimized structures were obtained by minimizing the total energy as a function of the lat-
Figure 2. Visualization of the experimentally observed wurtzite (2H) type (a) and the theoretically calculated 4H polytype (b) and 6H polytype (c) modifications of ZnO (the grey and red spheres stand for the Zn and O atoms, respectively).

For the three optimized structures the electronic and optical properties were analysed by calculating the density of electronic states (DOS) and the dielectric function \(\varepsilon(\omega) \) and its optical related properties: the absorption coefficient \(\alpha(\lambda) \), the real part of the refractive index \(n(\lambda) \), and the transmittance spectra \(T(\lambda) \) [28,29,42].

On the other hand, by considering that among the three studied ZnO polytypes, the 2H bulk phase is the one reported experimentally, additional properties were predicted for this structure to make a comparison with previously published results. In this sense, the Zn and O local environments were analysed by considering variations in the Zn–O distances and studying the EFG at the Zn and O sites. For this purpose, we used the Gauge-Included Projector Augmented Waves (GIPAW) approach [42,48,49]. Finally, from a set of strains applied to the DFT and DFT+U equilibrium structures, the elastic constants \(C_{ij} \) and the bulk modulus \(B \) were calculated [47,50].

III. Results

3.1. Experimental results

SEM images obtained for the sample Z3 after polishing one face of this sample up to optical quality (1/4 µm) are presented in Fig. 3. As it can be seen, the local measurement of the sample thickness gives about 1.5 µm at the end-face. Also, pores or inhomogeneities were observed at the micrometric scale, distributed over the film surface and volume (see the dark regions of about 1 µm² shown by enclosed curve A in Fig. 3).

XRD pattern of the sample Z3 is shown in Fig. 4a and allows determination of the crystal structure and the coatings preferred orientation. All the sharp diffraction peaks were assigned to the hexagonal phase (wurtzite). We performed a Rietveld refinement considering a preferred directional growth along (002) and (101) planes, and determined the lattice parameters \(a = b = 3.2577(6) \) Å, \(c = 5.21456(9) \) Å \((c/a = 1.6007(3)) \), and the positional parameter \(u = 0.3799(1) \), which define the \(z \) coordinates of the O atoms in the structure. By using these values the distances from Zn to the apical and basal O atoms were calculated: \(d(Zn-Oa) = 1.981(3) \) Å and \(d(Zn-Ob) = 1.982(1) \) Å, respectively.

XRD patterns of the coatings Z1, Z2 and Z3 for the selected 2θ range from 30° to 38° are shown in Fig. 4b. In this region, we observed the 002 and 101 diffraction peaks, and also the very weak peak corresponding to (100) plane. As it can be seen, it is clear that the Z1 coating is oriented along (002) plane, which means a preferred growth direction along the \(c \)-axis for this sample. On the other hand, the samples Z2 and Z3 have a 101 diffraction peak with higher intensity than the 002 one, which is related to a preference for the (101) plane as the sample thickness increases, as also observed by other authors [51].

The preferential crystallite orientation can be quantitatively analysed with the texture coefficient (TC), which compares the relative peak intensities with those of the reference data card (JCPDS 00-036-1451). The
Figure 4. XRD pattern with Rietveld refinement for sample Z3 (a) and detail of the (100), (002) and (101) diffraction peaks (b) for samples Z1, Z2 and Z3 and texture coefficients TC (inset)

The TC factor was estimated using the following relation:

\[TC_{(hkl)} = \frac{I}{I_0} \frac{1}{N} \sum \left(\frac{I}{I_0} \right) \]

where \(TC_{(hkl)} \) corresponds to the \(hkl \) plane, \(I \) is the measured peak intensity, \(I_0 \) the corresponding one of the reference card, and \(N \) is the number of considered reflection faces in the XRD pattern. The deviation of TC from unity implies the film growth in a preferred orientation.

The TC values for the (002), (101), and (100) planes are shown in inset of Fig. 4b. As it can be seen, the Z1 has the highest \(TC_{(200)} \) value, being 2.7, and it is about 1.5 for the Z3 and Z2 coatings. The opposite behaviour was observed for \(TC_{(101)} \), being about 0.2 for the Z1 and increasing up to 1.2 for both Z2 and Z3 coatings, whereas \(TC_{(001)} \) is about 0.1–0.2 in all three samples.

Regarding the optical properties, Fig. 5 shows the transmittance spectra of the Z1, Z2 and Z3 coatings. As it can be seen, the thicker coatings present more interference fringes. The maximum transmittance (about 90%) is obtained in the infrared (IR) region, whereas at the visible range the transmittance is between 40 and 80%. The inhomogeneities observed by SEM are represented in these measurements by the shrinkage of the two evolving curves: one that interpolates maximums and the other that interpolates minimum values of interference fringes (dashed lines around Z3 transmittance in Fig. 5), i.e. an important reduction of the oscillation amplitude is observed as wavelength decreases [52]. From the interference fringes in the \(\lambda \) range of 700–1000 nm, we determined the coating thickness \(t \). To this purpose, we compared the experimental spectra with simulations of \(T(\lambda) \) obtained using the widely known Filmetrics reflectance calculator based on the complex-matrix form of the Fresnel equations [53]. By considering coatings with a refractive index \(n \) between 1.8 and 2.0 [5,7,8], and a SiO\(_2\) substrate with \(n_s = 1.45 \), we obtained \(t = 1.3(1), 2.1(1), \) and \(2.3(1) \mu m \) for samples Z1, Z2, and Z3, respectively. For Z3, the difference of the \(t \) value with the local thickness of about 1.5 \(\mu m \) observed by SEM (Fig. 3) can be attributed to the variation of thickness along the sample surface.

Figure 5. Transmittance spectra and Tauc’s plot (inset)

On the other hand, to determine the optical band gap \(E_g \), we used the Tauc’s relation \(\alpha h\nu = A(\hbar\nu - E_g)^{1/2} \), where \(A \) is a constant, \(h\nu \) is the photon energy, and the absorption coefficient \(\alpha \) is calculated from the transmittance \(T(\lambda) \) using the Beer-Lambert law \(\alpha = \ln(1/T)/t \). The Tauc’s plots \((\alpha h\nu)^2 \) vs. \(h\nu \), presented in inset of Fig. 5, were used to determine \(E_g \) by extrapolating the linear portion to zero. It was found that \(E_g = 3.24(1) \) eV for all three samples, a value that is in good agreement with the results reported for ZnO films by other authors [8,10,12,13].

3.2. Calculation results

DFT and DFT\(+U\) optimized structures

Table 1 summarizes the basal lattice parameter \(a \) and the \(c/a \) ratio for 2H, 4H and 6H polytypes obtained using the DFT and DFT\(+U\) approaches. For comparison, other theoretical data available in the literature for all three polytypes were also included [21,22] together with...
Table 1. Lattice parameters for ZnO polytypes obtained by DFT and DFT+U (for three polytypes, theoretical values predicted by other authors are also included as well as the experimental values for ZnO bulk and coating)

<table>
<thead>
<tr>
<th>Method</th>
<th>Method</th>
<th>Method</th>
<th>Method</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>a [Å]</td>
<td>c/a</td>
<td>Structure</td>
<td>a [Å]</td>
</tr>
<tr>
<td>2H</td>
<td>DFT</td>
<td>3.3169</td>
<td>1.6087</td>
<td>DFT</td>
</tr>
</tbody>
</table>

The experimental results reported by Wyckoﬀ [44] and data obtained in this work for the 2H phase.

Our calculations show that the different polytypes have a similar basal lattice parameter. The predicted a and c/a values are in good agreement with the available experimental and theoretical data. As it can be seen in Table 1, the optimization of the 2H structure leads to a slight overestimation of the lattice parameters (up to about 2% of the experimental values). A closer look at these results shows that the inclusion of the Hubbard term produces lattice parameters closer to the experimental ones. This improvement in the prediction of the 2H unit cell with DFT+U was also observed before by other authors [23,24,26].

DOS, bandgap and optical properties

The results of the density of electronic states (DOS) corresponding to the different ZnO structures and calculation approaches are shown in Fig. 6. As it can be seen, for the same calculation method (DFT or DFT+U) no significant changes of the DOS are observed from one cell to another. For the 2H type, the DOS corresponding to the starting structure (dashed lines in Fig. 6) is also presented to show that the structural optimizations do not produce significant changes in the electronic properties. In general, the DOS presents the valence band with O-2p and Zn-4d character, separated from the Zn-2s conduction band by \(E_g \). In the case of DFT calculations (Fig. 6a), we obtained \(E_g \) values of about 1 eV, which underestimates the experimental value and reflects the well-known band gap problem. The addition of the \(U \) parameter modifies the DOS and increases the predicted \(E_g \) to about 3.4 eV (Fig. 6b), which is in better agreement with the measured band gaps.

Considering the improvement obtained with DFT+U, we used this approach to calculate the dielectric function \(\varepsilon(\omega) \) and related optical properties. The real and imaginary part of \(\varepsilon(\omega) \) \((\varepsilon_1, \varepsilon_2) \) respectively for all three structures are given in Fig. 7a. As it can be seen again, no significant changes in these dielectric functions are observed from one polytype to another. These results show the typical behaviour for a semiconductor: \(\varepsilon_1 \) is a positive function, which approaches the dielectric constant \(\varepsilon_\infty \) in the limit \(\omega \to 0 \) (experimentally, \(\varepsilon_\infty = 3.7 \) [16,54]). On the other hand, the first \(\varepsilon_2 \) slight shoulder at about 3.4 eV corresponds to the interband absorption edge in the range of UV energies, expected according to the transparency of the ideal ZnO [29,30,54]. By using \(\varepsilon_1(\omega) \) and \(\varepsilon_2(\omega) \), we calculated \(\alpha(\lambda) \) and \(n(\lambda) \) [28] (Fig. 7b). Our predictions for all these optical properties are in good agreement with previous calculations by other DFT methods [20,26,31,33,55], as well as with the experimental measurements obtained.
Figure 7. Dielectric function $\varepsilon = \varepsilon_1 + j\varepsilon_2$ (a) and absorption coefficient α and the real part of the refractive index n (b) for different fully optimized ZnO structures with DFT+U.

Figure 8. DFT+U simulated transmittance spectra T in the range of 200–1000 nm for the 2H type ZnO, before and after structural optimization, and comparison with experimental measurement for the Z1 sample.

Table 2. Local structures and EFGs for the 2H ZnO unit cells (the experimental values in the last row come from [a] this work, and [b] Ref. [56] and the sign of V_{zz} is unknown)

<table>
<thead>
<tr>
<th>2H structure</th>
<th>$d_{(Zn-Oa)}$ [Å]</th>
<th>$d_{(Zn-Ob)}$ [Å]</th>
<th>$V_{zz(Zn)}$ [10¹¹ V/m²]</th>
<th>$V_{zz(O)}$ [10¹¹ V/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting structure of Wyckoff [44]</td>
<td>1.796</td>
<td>2.042</td>
<td>-8.13</td>
<td>$+2.47$</td>
</tr>
<tr>
<td>DFT</td>
<td>1.796</td>
<td>2.042</td>
<td>-9.25</td>
<td>$+2.53$</td>
</tr>
<tr>
<td>DFT+U</td>
<td>2.031</td>
<td>2.018</td>
<td>$+0.61$</td>
<td>-0.26</td>
</tr>
<tr>
<td>DFT+U fully optimized</td>
<td>2.000</td>
<td>1.993</td>
<td>$+0.60$</td>
<td>-0.25</td>
</tr>
<tr>
<td>Experimental values</td>
<td>1.981(3)[a]</td>
<td>1.982(1)[a]</td>
<td>0.6595(2)[b]</td>
<td>0.2326(7)[b]</td>
</tr>
</tbody>
</table>
perimental values [56]. Therefore, as it can be seen from Table 2, the structural relaxations (involved in the fully optimized structures) are necessary to correctly describe the local structures observed in our XRD measurements and the EFG experimental values. This means that the starting structure considered for our calculations has an incorrect value of a positional parameter and therefore wrong Zn–O distances, as other authors also mentioned [57]. Nevertheless, we included these results to show that DFT and DFT+U can find the correct atomic positions after structural relaxations, and also the correct V_{zz} values. Considering the high sensitivity of the EFG, the comparison of these predicted and measured quantities is very suitable to assess the accuracy of the calculation approaches.

Elastic properties of the wurtzite (2H) ZnO

The elastic constants C_{ij} and the bulk modulus B calculated for the wurtzite structure are presented in Table 3. The Voigt’s notation is used according to which i, j = 1, 2, . . . , 6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy). In our case, the C_{ij} coefficients are the five independent components of the fourth-rank tensor corresponding to the hexagonal solid [47]. Table 3 also includes theoretical data calculated by other authors using GGA [58] and the hybrid functional B3LYP [59], as well as the available experimental values obtained for ZnO polycrystalline films [60,61]. It can be noted that our predictions are in a general agreement with those values. A comparison of our DFT values with the experimental data shows that the calculated C_{ij} systematically underestimates the experimental value, which is expected according to the systematic overestimation of the equilibrium lattice parameters obtained with DFT (Table 1). The inclusion of the U parameter produces an increase in the predicted C_{ij} values, giving C_{ij} values dispersed around the experimental ones, with differences up to about 30% (for C_{13}). Finally, the bulk modulus B, calculated through a linear combination of the elastic constants [59], follows the same general agreement already described.

| Table 3. Results corresponding to the elastic properties of the 2H structure of ZnO |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------|
| DFT | C_{11} [GPa] | C_{12} [GPa] | C_{13} [GPa] | C_{33} [GPa] | C_{44} [GPa] | B [GPa] |
| DFT+U | 244 | 110 | 86 | 243 | 53 | 144 |
| GGA [58] | 235 | 67 | 61 | 288 | 50 | 129 |
| B3LYP [59] | 218 | 124 | 106 | 223 | 44 | 148 |
| Exp. [60] | 209(1.5) | 120(1) | 104.4(2.0) | 216(4) | 44.3 | 143(5) |
| Exp. [61] | 206(4) | 116(5) | 118(10) | 211(4) | 44(1) | 147(7) |

IV. Discussion

Even though there are some studies of ZnO-based systems that combine experiments and DFT+U calculations, to the best of our knowledge, there has been no comprehensive analysis of the performance of the DFT+U approach that simultaneously describes structural, optical and elastic properties of ZnO as it has been done in the present investigation, where the ab initio predictions are proposed to complement experimental studies on ZnO coatings. Therefore, we produced and characterized ZnO coatings and also we also performed first-principles calculations for three polytypes of hexagonal ZnO. This combination of measurements and predictions allowed us to simultaneously analyse different properties of the synthesized coatings and also to assess the DFT+U method for predicting those properties in the different polytypes. For the experimental existing 2H phase, our systematic comparison of the DFT+U predictions with DFT and experimental results demonstrated that DFT+U is effective to predict and describe not only bandgap energy, as it is already known, but also the structural and elastic properties of ZnO. In this sense, its strength lies in its vast range of applicability: from the atomic local environments (through the Zn–O distances and EFGs) to the crystallographic scale and the elastic constants. Then, the presented combination of calculations and experiments enhances the analysis of the materials. For example, we showed that after considering the structural relaxations the atomic environments have strong differences compared to those of the starting structure, and such relaxations are required to correctly describe the properties observed through XRD and EFG measurements. In contrast, these local environment differences are not reflected by the optical transmittance spectra. So, we can propose interplay between the ab initio models and a variety of experimental results to validate the calculation methods and assess the sensitivity of the involved experimental techniques. Considering this, we found that the DFT+U predicted properties are generally in a good agreement with our own experimental measurements performed on the ZnO coatings produced with the SP technique. The few differences between predictions and measurements could be expected according to the method and due to the simplicity of the proposed modelling approach and the complex nature of the real samples. Then, DFT+U is useful to obtain information about the optical and elastic properties of ZnO, which is of practical importance in the design of thin films and coatings.

The present results allow us to extend this methodology to analyse further aspects related to the electro-optical and piezo-optical applications of ZnO coatings. For example, how the film deposition and growing conditions affect the residual stress and C_{ij} coefficients [5,7,12,13,61]. Furthermore, the DFT+U may be ap-
plied to more complex ZnO systems to predict optical and elastic properties when defects, impurities, and interfaces are present [3,4,6,14,22,26].

V. Conclusions

ZnO coatings were produced by the spray-pyrolysis technique and characterized by scanning electron microscopy, X-ray diffraction and optical transmittance spectroscopy. The experimental results were compared to predictions obtained from the electronic-structure calculations based on the DFT+U approach. We consider that this study is a successful first step towards the study of more complex ZnO-based coatings, where the \textit{ab initio} calculations support the experiments to achieve a deeper insight into the material properties, which are central to the development of optically active nanocomponents like diodes, lasers, solar cells and band optical filters.

Acknowledgments: We wish to acknowledge the Argentinean funding institutions for supporting this work: Agencia Nacional de Promoción de Ciencia y Tecnología under contract PICT 2015-0452 and Universidad Nacional de La Plata (UNLP) under grant “Jóvenes Investigadores”. Part of the results presented in this work has been obtained using the facilities of the CCT-Rosario Computational Center, member of the High Performance Computing National System (SNCAD, MinCyT-Argentina). We want to thank Dra. Susana Conconi (CETMIC) for assistance with XRD analysis. D. R. and M. R. T. are members of Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.

References