Crystal structure, optical and magnetic properties of PrFeO$_3$ nanoparticles prepared by modified co-precipitation method

Anh Tien Nguyen1, Ngoc Tram Nguyen1, Irina Yakovlevna Mittova2, Nikolai Sergeevich Perov3, Valentina Olegovna Mittova4, Thi Cam Chuong Hoang1, Van My Nguyen1, Van Hung Nguyen5, Vinh Pham6, Xuan Vuong Bui7,8,*

1Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
2Voronezh State University, Universitetskaya pl.1, Voronezh, 394018, Russia
3Magnetism Department, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
4Burdenko Voronezh State Medical University, Voronezh, 394036, Russia
5Dong Thap University, Cao Lanh City, 81000, Vietnam
6Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
7Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
8Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam

Received 13 March 2020; Received in revised form 7 July 2020; Received in revised form 22 September 2020; Accepted 26 October 2020

Abstract

In this work, PrFeO$_3$ nanoparticles were synthesized by modified co-precipitation method and annealed at different temperatures up to 850 °C. The annealed PrFeO$_3$ nanoparticles have single phase orthorhombic structure and the average particle size of 25–30 nm. Due to the very small particle size the prepared PrFeO$_3$ nanoparticles are capable of being used as photocatalyst materials thanks to their strong adsorption bands at 230–400 nm and 400–800 nm observed from the UV-Vis spectra. Additionally, the PrFeO$_3$ nanoparticles are paramagnetic materials with $H_c \sim 10$ Oe and $M_r \sim 0$. These findings demonstrate their potential use not only as photocatalysts, but also as magnetic materials.

Keywords: PrFeO$_3$, nanoparticles, improved co-precipitation method, optical and magnetic properties

I. Introduction

Complex oxides with ReMO$_3$ perovskite structure, where Re and M are rare-earth and transition metals, respectively, represent an important class of functional materials [1–3]. Especially, the materials based on orthoferrite rare-earth elements (Re = La, Pr, Nd, Ho, etc.) possess good electrical and magnetic properties which are decreased from microscale to nanoscale [4–9]. Among the rare-earth orthoferrites, PrFeO$_3$ has found applications in magnetic field materials [10–13], photocatalysis [14–16], dyes and inorganic pigments [17,18].

Properties of the orthoferrite ReFeO$_3$ perovskite nanomaterials, such as optical and magnetic properties, depend on the chemical composition, distribution of cations, particle size and synthesis method. Typically, the PrFeO$_3$ nanoparticles with size of 80 nm show a band gap value of 2.4 eV [15], which decreases to 2.08 eV when the particle size is 50 nm [14]. The decrease of the band gap leads to the increase of photocatalytic yield in visible light and offers new areas of application.

Magnetic behaviour of PrFeO$_3$ has also attracted significant attention. Thus, the magnetic characteristics (antiferromagnetic Néel temperature T_N, curves of magnetic susceptibility reciprocal $1/\chi$ against temperature and the temperature dependence of magnetization ZFC and FC) of orthoferrite PrFeO$_3$ materials with a parti-
Particle size of 20–30 μm have been investigated under the applied magnetic field of 1000 Oe [10]. In addition, the temperature dependence of magnetization (ZFC and FC) with a magnetic field of 500 Oe has been investigated for the orthoferrite PrFeO₃ thin film (having thickness ~200 nm) [11,12] prepared by a ceramic reaction technique.

Orthoferrite PrFeO₃ nanoparticles have been synthesized via various methods including high-temperature ceramic fabrication [9,13,18], hydrothermal methods [10,16], and sol-gel complex methods [14,15,17,19]. However, orthoferrite PrFeO₃ particles with a size of 25–30 nm (prepared by simple co-precipitation method), a small band gap and the features of magnetism under a high magnetic field (~15000 Oe) have not been reported. Thus, the aim of this work was to prepare PrFeO₃ nanoparticles (20–25 nm) and study their structural, optical, and magnetic properties.

II. Experimental procedure

Pr(NO₃)₃·6H₂O (99.8% purity, Merck), Fe(NO₃)₃·9H₂O (99.6% purity, Sigma-Aldrich) and NH₃ solution (Xilong, 85% purity), were employed as the starting materials. The synthetic process was similar to that described in our previous reports [20–22]. A solution including an equal amounts of Pr(NO₃)₃ and Fe(NO₃)₃ salts was gradually introduced to hot water (> 90°C). Then, the mixture was continuously stirred for 5 min and cooled to room temperature (25–30°C). In the next step a 5% NH₃ solution was slowly added and continuously stirred until the solution colour changed into light pink indicated by phenolphthalein. The precipitate was filtered, washed by deionized water until pH = 7 and dried in air at room temperature (25–30°C). Finally, the products were ground and thermally treated at different temperatures.

Furthermore, the pure oxide materials, i.e. Fe₂O₃ and Pr₂O₃, were also prepared by a similar procedure to compare their structure with the structure of the synthesized PrFeO₃ perovskite materials.

TGA-DSC analyser (Labysys Evo, TG-DSC 1600°C, SETERAM Instrumentation, Caluire, France) was used to determine the appropriate temperature for obtaining the single-phase PrFeO₃ perovskite structure. The sample was placed in a platinum cylindrical crucible and heated from 25 to 1000°C at 10°C/min in dried air.

X-ray powder diffraction (PXRD) patterns were obtained on a D8-ADVANCE (Bruker, Bremen, Germany) with CuKα radiation (λ = 1.5418 Å) using step size of 0.02° in the range of 10–80°. The crystalline sizes of the annealed PrFeO₃ powders were determined based on Scherrer’s equation [23]:

\[
D = \frac{0.894}{\beta \cdot \cos \theta}
\]

where λ is X-ray wavelength of CuKα = 1.5418 Å, θ is the diffraction angle of the maximum reflection and β is the full-width at half maximum (FWHM). The lattice parameters (a, b, c) and cell volume (V) were calculated by Eqs. 2 and 3, respectively [23]:

\[
\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}
\]

\[
V = a \cdot b \cdot c
\]

where d is the distance between crystalline planes with Miller indices hkl.

Particle size and morphology of the annealed PrFeO₃ crystals were studied by transmission electron microscopy (TEM, Joel JEM-1400, Joel Ltd., Tokyo, Japan) and field emission scanning electron microscopy (FESEM, S-4800, Hitachi, Japan). The content and surface distribution of Pr, Fe and O elements were determined by energy-dispersive X-ray spectroscopy (EDX and EDX-mapping, Horiba H-7593, Horiba, Northampton, UK).

The UV-Vis absorption spectra of the PrFeO₃ nanocrystals were recorded on a UV-Visible spectrophotometer (UV-Vis, JASCO V-550, Hachioji, Tokyo, Japan). Magnetic properties of the samples (saturation magnetization Ms, coercivity Hc and remanent magnetization Mr) were measured at room temperature with a vibrating sample magnetometer (VSM, MicroSense EV11, Japan).

III. Results and discussion

3.1. Thermal analysis

To find the optimal temperature range in which single-phase PrFeO₃ perovskite structure will be formed, thermal gravimetric analysis (TGA) was conducted and the results are presented in Fig. 1. Accordingly, the initial weight loss (~7.6%) starts at 60°C, yields a maximum value at 107°C and finishes at ~240°C. An endothermic peak arises on the DSC curve at 107°C, which can be attributed to the loss of surface

![Figure 1. TG-DSC curves of PrFeO₃ precipitate sample](image-url)
water. From 240 to \(\sim 550^\circ C\), the weight loss (\(-16.4\%\)) is due to water removal through crystallization, the dehydration of \(\text{Fe}_2\text{O}_3 \cdot x\text{H}_2\text{O}\) (where \(x = 1–5\)) [24] and the pyrolysis of \(\text{PrO(OH)} \cdot y\text{H}_2\text{O}\) [25]. In this stage, two endothermic peaks appeared at 356 and 430 \(^\circ C\), respectively. The small weight loss (\(-4.6\%\)) between 550 and 730 \(^\circ C\) may account for the release of adsorbed \(\text{CO}_2\) from the \(\text{Pr}_2\text{O(CO}_3\text{)}_2 \cdot 1.4\text{H}_2\text{O}\) or \(\text{Pr}_2\text{(CO}_3\text{)}_3 \cdot 8\text{H}_2\text{O}\) structures [25,26]. In addition, in the temperature interval from 600 to 650 \(^\circ C\) there is an exothermic peak with maximum at 619 \(^\circ C\) indicating formation of perovskite phase. Hence, the temperatures of 650, 750 and 850 \(^\circ C\) were chosen for investigating the structure and morphology of the synthesized \(\text{PrFeO}_3\) nanoparticles.

3.2. Structure and morphology

PXRD patterns of the samples \(\text{PrFeO}_3\), \(\text{Fe}_2\text{O}_3\) and \(\text{Pr}_6\text{O}_{11}\) after annealing for 1 h at 750 \(^\circ C\) are presented in Fig. 2. For the pure Pr-based sample, the stable \(\text{Pr}_6\text{O}_{11}\) phase was generated after annealing the hydroxide praseodymium precipitate instead of the unstable \(\text{Pr}_2\text{O}_3\) phase. This is clearly explained by the following equation [25]:

\[
6\text{Pr(OH)}_3 + \text{O}_2 \rightarrow \text{Pr}_6\text{O}_{11} + 9\text{H}_2\text{O} \quad (4)
\]

Interestingly, the observed reflections of the \(\text{PrFeO}_3\) sample are in good agreement with the standard JCPDS 047-0065 of the orthorhombic \(\text{PrFeO}_3\) phase without any XRD peaks of \(\text{Fe}_2\text{O}_3\) and \(\text{Pr}_6\text{O}_{11}\) phases. This is clear confirmation of the TGA-DSC results and indication that the reaction between precursors is completed after annealing.

Further on, the diffraction pattern of the \(\text{PrFeO}_3\) samples annealed at 650, 750 and 850 \(^\circ C\) for 1 h are shown in Fig. 3. All three samples have single-phase orthorhombic \(\text{PrFeO}_3\) structure. The increase of annealing temperature leads to the increase of the peak intensity and decrease in the full-width at half maximum (FWHM). The crystal size, calculated by the Scherrer’s equation, decreases from 21.3 to 27.4 nm when the annealing temperature increases from 650 to 850 \(^\circ C\) (Table 1).

![Figure 3. PXRD patterns of \(\text{PrFeO}_3\) nanopowders annealed at 650, 750 and 850 \(^\circ C\) for 1 h](image)

The lattice parameters \((a, b, c)\) and cell volume \((V)\), calculated by Eqs. 2 and 3, are shown in Table 1. It is clear that the change of parameter \(a\) and \(b\) is non-linear, however, unit cell volume \((V)\) increases with the annealing temperature. A similar result was also observed in the previous report [18].

SEM and TEM images (Fig. 4) of the orthoferrite \(\text{PrFeO}_3\) powder annealed at 750 \(^\circ C\) confirm that the particles are equiaxial and have an average size of 25–30 nm. EDX spectra and EDX-mapping are given in Fig. 5 indicating the uniform distribution of praseodymium, iron and oxygen as the elementary components. Analysis of the weight and atomic percent of \(\text{PrFeO}_3\) nanoparticles were in agreement with the theoretical values calculated from the chemical formula.

3.3. Optical and magnetic properties

The UV-Vis absorption spectra of the \(\text{PrFeO}_3\) nanoparticles annealed at 750 \(^\circ C\) showed strong absorption in the ultraviolet (\(-230–400\) nm) and visible

![Figure 2. PXRD patterns of \(\text{PrFeO}_3\), \(\text{Fe}_2\text{O}_3\) and \(\text{Pr}_6\text{O}_{11}\) powders annealed at 750 \(^\circ C\) for 1 h](image)

![Table 1. XRD peak intensity \((I)\), crystal size \((D)\) and lattice parameters of \(\text{PrFeO}_3\) samples annealed at 650, 750 and 850 \(^\circ C\) for 1 h](table)

<table>
<thead>
<tr>
<th>Annealing temperature</th>
<th>(I) (count)</th>
<th>FWHM ((^\circ))</th>
<th>(D) (nm)</th>
<th>Lattice constants [(\text{Å})]</th>
<th>Cell volume (V) [(\text{Å}^3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 (^\circ C)</td>
<td>142</td>
<td>0.384</td>
<td>21.3</td>
<td>5.4564 5.5756 7.8032</td>
<td>237.40</td>
</tr>
<tr>
<td>750 (^\circ C)</td>
<td>165</td>
<td>0.336</td>
<td>24.4</td>
<td>5.4756 5.5821 7.7900</td>
<td>238.11</td>
</tr>
<tr>
<td>850 (^\circ C)</td>
<td>178</td>
<td>0.312</td>
<td>27.4</td>
<td>5.4418 5.6150 7.8111</td>
<td>238.67</td>
</tr>
</tbody>
</table>
light regions (∼400–800 nm). This is interesting because PrFeO$_3$ could be applied as a new visible-light photocatalyst. The direct band gap energy (E_g) was determined by fitting the absorption data to the direct transition using the following equation:

$$A \nu = \sqrt{\alpha (\nu - E_g)}$$

(5)

where A is the optical absorption coefficient, ν is the photon energy, E_g is the direct band gap and α is a constant [27]. The extrapolation of the linear portions of the curves toward absorption equal to zero ($(A \nu)^2 = 0$) gives E_g for direct transitions (Fig. 6b). As a consequence, the band gap value of the PrFeO$_3$ nanoparticles is ∼1.660 eV which is lower than in the previous works. For example, Tijare et al. [14] and Peisong et al. [15] have reported direct band gap values of 2.08 and 2.40 eV for PrFeO$_3$ nanoparticles synthesized by sol-gel method, respectively. The band gap values obtained are 2.03 and 1.88 eV for PrFeO$_3$ synthesized by template and combustion methods, respectively [14]. This is probably because the PrFeO$_3$ nanoparticles synthesized in this study have a smaller particle size than in previous works [14,15]. With $E_g = 1.660$ eV, the obtained PrFeO$_3$ nanoparticles are in the form of semiconductor material, suitable for application in photocatalysis, sensor and electrode materials in solid oxide fuel cells [1,14–16].
Magnetic properties of PrFeO$_3$ materials at 300 K are shown in Fig. 7. The value of coercivity is very low (especially for PrFeO$_3$ annealed at 750 and 850 °C, $H_c \sim 10$ Oe) and gradually decreases with an increase of the annealing temperature (Table 2). Herein, it can be explained that the phase structure of PrFeO$_3$ per-
ovskite becomes complete after increasing the annealing temperature. This can lead to a reduction of crystal anisotropy i.e. reduction of lattice defects [31]. Interestingly, the synthesized PrFeO$_3$ nanomaterials possess a value of the remanent magnetization almost zero ($M_r \approx 0$) and the magnetization (M_s) curve rises with an increase of the magnetic field (Fig. 7). Moreover, the value of coercivity is much lower than for the RFeO$_3$ (R = Pr, Ho, La, Nd, Y) materials reported previously [28]. The small value obtained for the coercivity can be explained by the small particle size and less agglomeration of the synthesized nanoparticles PrFeO$_3$ in this study compared with previous work [28].

Therefore, the synthetic PrFeO$_3$ nanoparticles are paramagnetic material and can be applied in biomedical physics, involving rapid responses with external magnetic fields [32].

IV. Conclusions

The PrFeO$_3$ nanoparticles were prepared by modified co-precipitation method and annealed at different temperatures (650, 750 and 850 °C). It was found that after annealing the single-phase orthorhombic PrFeO$_3$ was generated possessing the average particle sizes in the range of 25–30 nm and unit cell volumes in the range of 237–239 Å3. As a result of these structural features, the PrFeO$_3$ nanoparticles adopted the strong adsorption bands in the UV-Vis range. This can lead to potential applications for photocatalytic materials. The PrFeO$_3$ nanoparticles are paramagnetic with low coercivity and remanent magnetization, which makes them the potential candidates for making the devices operating at a high magnetic field.

References

16. S.K. Megarajan, S. Rayalu, M. Nishibori, N. Labhsetwar,

