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Preface: Calculus and Calculation

ItÕs no coincidence that ÒcalculusÓ and ÒcalculateÓ are
similar. When you perform a calculation, you take infor-
mation in one form Ñ say 3 ! 19 Ñ and translate it into
another, more readily interpreted form Ñ 57. Similarly,
calculus translates information about parts and about
change into information about wholes and accumulation.

In the 17th and 18th centuries, when calculus was in-
vented by Newton and others, todayÕs familiar comput-
ers were unimaginable. Sensibly, the calculations were
presented in a means suitable to the technology of those
centuries: paper and quill. The calculus computations of
that era involved the manipulation of symbols according
to mathematically derived rules, for instance x2 " 2x.
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Figure 1: One of the many
rules for the manipulation
of symbols presented in the
Þrst calculus textbook in 1699,
by the Marquis de lÕHopital.
("Regle" is French for "rule.")

These rules are still useful in important ways, but there
are now other technologies for performing the computa-
tions of calculus. In addition to symbolic calculus, there
is numerical calculus, which relies on simple arithmetic.
Numerical calculus, tedious and impractically slow for
a human, is easy work for a computer. Perhaps surpris-
ingly, numerical calculus is also easier for many people to
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understand and carry out. As such, it provides a means
to teach the concepts of calculus.

Numerical calculus is also more general than symbolic
calculus. There are many sorts of problems for which
symbolic calculus fails to provide an answer even for the
most talented and well-trained mathematicians. By using
numerical calculus, a much wider range of problems can
be addressed, even by beginners. This is especially true
for modern problems in modeling and data analysis for
which the symbolic methods were never intended.

Performing numerical calculus requires a computer.
Less obviously, it also requires a way to communicate
with the computer, to tell the computer what to do. In
other words, to do calculus numerically, you need a way
to translate between human intention and electronic com-
putation: a language or notation.

These notes introduce one such notation for numerical
calculus, based on the computer language R.

R is a language for communicating instructions to a
computer and, it turns out, is also effective for communi-
cating with people. The R software is a computer system
that understands this language and acts on it.

Many people get nervous when they hear they will be
learning a new language. Most of our interaction with
computers Ñ word processing, e-mail, blogs and social
networking, spreadsheets Ñ is done with software thatÕs
menu- and mouse-driven. Typically, itÕs pretty easy to
learn such systems. You just have to be shown how and it
takes a few minutes to get started.

You will be spending a few hours getting started in
R. Why? IsnÕt there some simpler way? Why isnÕt there
nice mouse-based software? Why do you need to learn a
language?

The answer isnÕt about the quality of software or the
availability of friendly packages. Instead, the reason to
learn a language has to do with the sorts of things you
will be doing in mathematics and statistics. In them-
selves, the individual tasks you will undertake are not
necessarily more complicated than, say, changing a word
to a bold-face font, something you would do easily with a
mouse.
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There are several aspects of technical comput -
ing that makes it different from word-processing and
other familiar, everyday computing tasks.

1. In mathematics and statistics, there are often multiple
inputs to a computation. To illustrate multiple inputs,
consider a familiar word-processing computation: Þnd-
ing all the instances of the word ÒcarÓ in a document
and changing them to ÒautomobileÓ. Easy enough; just
use the find feature. But be careful! You might end
up with ÒautomobileefulÓ or ÒinautomobileceratedÓ or
ÒautomobilecinogenicÓ instead of careful, incarcerated,
or carcinogenic. A second input to the calculation is
needed: the set of contexts in which to allow or disal-
low the change. For instance, allow the change when
ÒcarÓ is preceded by a space and followed by a space
or a period or a comma, or an ÒsÓ+ space (ÒcarsÓ"
ÒautomobilesÓ). Things are not so simple as they might
seem at Þrst, which is why the Þnd-and-replace feature
of word-processors is only partially effective.

2. In mathematics and statistics, the output of one com-
putation often becomes the input to another compu-
tation. ThatÕs why math courses spend so much time
talking about functions (and ÒdomainÓ and ÒrangeÓ,
etc.). In word processing, whenever you highlight a
word and move it or change the font or replace it, you
still end up with stuff on which you can perform the
same operations: highlighting, moving, font-changing,
etc. Not so in math and statistics. The sorts of opera-
tions that you will often perform Ñ solving, integra-
tion, statistical summaries, etc. Ñ produce a new kind
of thing on which you will be performing new kinds
of operations. In mathematics and statistics, you cre-
ate a chain of operations and you need to be able to
express the steps in that chain. ItÕs not a question of
having enough buttons to list all the operations, youÕll
need combinations of operations Ñ more than could
possibly be listed in a menu system.

3. In mathematics and statistics, the end-product is not
the only thing of importance. When you write a let-
ter or post to a blog, what counts is the Þnal product,
not the changes you made while writing and certainly
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not the thought process that you went through in com-
posing your words. But in mathematics and statistics,
the end-product is the result of a chain of calculations
and itÕs important that each step in that chain be cor-
rect. Therefore, itÕs important that each step in the
chain be documented and reproducible so that it can
be checked, updated, and veriÞed. Often, the chain
of calculations becomes a new computation that you
might want to apply to a new set of inputs. Expressing
your calculations as a language allows you to do this.

If you have ever travelled to a country where you donÕt
speak the language, you know that you can communicate
simple ideas with gestures and pointing and can satisfy
the relatively simply expressed needs of eating and hy-
giene and shelter. But when you want to converse with
a person and express rich ideas, you need a shared lan-
guage.

Many people think that it would be better if other peo-
ple learned our language, and the natural extension of
this is that computers should be taught to speak English.
But it turns out that English, or other natural languages,
are not set up to be effective at communicating mathe-
matical or statistical ideas. You need to learn a way to
do this. The algebraic notation taught in high school is
part of the story, but not a complete solution. ThatÕs why
youÕll be learning R.

If youÕve ever learned just a little of a foreign language,
youÕre familiar with the situation where you say some-
thing that seems straightforward, but your listener gives
you a quizzical look: it doesnÕt make sense. You used the
wrong verb or the wrong preposition or a word with a
slightly different meaning. A relative of mine, visiting me
in France, once asked my host about Òlast year,Ó or so he
intended. He actually said something pretty close to Òel-
der buttock.Ó This did not produce the intended reaction.

Similarly in R. At Þrst, you will make elementary mis-
takes. The computer will respond, like my French host,
quizzically. But with practice Ñ just a few hours Ñ you
will become ßuent and able to express your ideas with
conÞdence and certainty.

As you learn the R language, which will be much,
much easier than learning a natural language like French



6

or Chinese or Spanish, you will make mistakes and you
will run into frustrating situations. But remember, the
reason you are learning it is to be able to express compli-
cated ideas. ItÕs the nature of mathematics and statistics
thatÕs at the core here. Having a systematic way to ex-
press yourself will not only let you use the computerÕs
power, but will increase your understanding of the math-
ematical and statistical ideas.
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1. Starting with RStudio

R is a language that you can use to direct a computer to
perform mathematical and statistical operations, produce
graphics, carry out data processing. In between the lan-
guage and the computer is a system that interprets the
language and communicates your instructions to the com-
puterÕs operating system and hardware. Due to the popu-
larity of R, there are many such interpreters. The one you
will be using is called RStudio .

You will likely use RStudio as a web service, like Face-
book or Google Docs.1 You need only have an Internet 1 ItÕs also possible to install

RStudio on your own computer,
and to use it without the web.

connection and a recent web browser Ñ the sort of thing
you might use for Facebook. No other software installa-
tion is required.

Figure 2: The RStudio window
displayed in a web browser.

The RStudio window has the familiar menu bar and is
divided into four ÒpanesÓ:

1. The Console pane, into which you will type your com-
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mands. The console maintains a transcript of your
session with RStudio Ñ your command inputs and the
computerÕs response.

2. The Workspace/History/Plots pane, which contains
three tabs. ThePlots tab is where your graphics will
appear. History maintains an organized record of your
previous commands to help you remember.

3. The Files/Packages/Help pane, which allows you to
access documentation of commands as well as to load
in new specialized software (ÒpackagesÓ).

4. The Source pane, barely visible in the Þgure, which
you will not be using at Þrst. Among other things,
ÒsourceÓ provides an editor for writing computer pro-
grams, which are chains of commands stored for later
re-use.

Ready? Go to the console and give your Þrst com-
mand, right after the prompt >.

3+2

When you press return, R interprets your command
and gives its response.

[1] 5

Simple arithmetic in R is done with a familiar nota-
tion. (See Figure 3 for some examples.) Remember to use
* multiplication and ^ for exponentiation. Multiplica-
tion must always be speciÞed explicitly. ItÕs correct to say
6* (3+1) but invalid to say 6(3+1) .
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5- 2

[1] 3

5/ 2

[1] 2.5

2^3

[1] 8

3^2

[1] 9

9* 7

[1] 63

9* 6+1

[1] 55

9* ( 6+1)

[1] 63

Figure 3: Arithmetic in R

For functions with letter names, for instance cos and
ln, you put the input to the function between parentheses.
For instance:

sqrt ( 9)

[1] 3

cos ( 1)

[1] 0.5403

acos ( 0)

[1] 1.571

sin ( pi )

[1] 1.225e-16

log ( 10)

[1] 2.303

exp (- 3)

[1] 0.04979

Figure 4: Use parentheses to
provide the input to named
functions.

Often , you will want to store the result of a cal-
culation under a name so that you can re-use the result
later. Such storage is called ÒassignmentÓ and is accom-
plished with the = operator:

first = 3
second = 4
hypot = sqrt ( first ^2 + second ^2)
myangle = asin ( second / hypot )
hypot * cos ( myangle )

[1] 3

When you want to see the value of a named value, just
type the name as a command:
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hypot

[1] 5

Of course, R can do much more than such calcula-
tions, but thatÕs enough to start for now.

Important N ote about Typing : In the RStudio con-
sole, you can use the keyboard up- and down-arrows to
recall previous statements. That saves you some typing
when you want to repeat something, or to make a small
change to a previous command. Remember that the con-
sole is in the form of a dialog, not a document. Each new
command, even if it is an edited version of a previous
command, appears on the last line. The up- and down-
arrows copy previous commands to the current prompt
line, but you canÕt edit the past, just copy it.
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Exercises

Exercise 1 Use R to calculate a numerical
value for each of these arithmetic expres-
sions:

(a) 3* sqrt(97)

13.72 21.61 23.14 29.55 31.01 31.20 33.03

(b) sqrt(pi)

1.6152 1.7693 1.7725 1.8122 3.1416 3.519

(c) exp(pi)

13.72 21.61 23.14 29.55 31.01 31.20 33.03

(d) pi^3

13.72 21.61 23.14 29.55 31.01 31.20 33.03

Exercise 2 Use R to calculate a numerical
value for each of these arithmetic expres-
sions:

(a)
#

2/3
0.4805 0.5173 0.5642 0.6304 0.7071 0.8165

(b) cos! /4
0.4805 0.5173 0.5642 0.6304 0.7071 0.8165

(c) 1/
#

2
0.4805 0.5173 0.5642 0.6304 0.7071 0.8165

(d) 1/
#

!
0.4805 0.5173 0.5642 0.6304 0.7071 0.8165

(e) 10$ 1/ !

0.4805 0.5173 0.5642 0.6304 0.7071 0.8165

Exercise 3 Here is a set of R expressions
that you should cut and paste as a command
into your R session:

alpha = 7

beta = 3

x = 9

From these named quantities, you are
going to compute a new one:

res =atan ( sqrt ( alpha ^2- beta )+

tan ( x/ alpha +beta / x))

You donÕt have to worry about what the
last expression might possibly mean, itÕs just
intended to be something complicated. Make
sure to cut and paste it into R so that you get
it exactly right.

The value of res will be $ 1.4991. Be-
fore continuing, make sure that your value
matches this, otherwise you wonÕt get correct
answers for the following questions.

(a) Change alpha to 17 and recompute res .
WhatÕs the new value ofres ? (Hint: Use
the up arrow to recall the complicated
command.)
1.5099 1.5127 1.5155 1.5177 1.5182 1.5207

(b) Keep alpha at 17 and x at 9, but change
beta to 6.6. Recompute res . WhatÕs the
new value of res ?
1.5099 1.5127 1.5155 1.5177 1.5182 1.5207

(c) Keep alpha at 17 and beta at 6.6, but
change x to 1. Recompute res . WhatÕs the
new value of res ?
1.5099 1.5127 1.5155 1.5177 1.5182 1.5207

(d) Keep alpha at 17 and beta at 6.6, but
change x to $ 1. Recompute res . WhatÕs
the new value of res ?
1.5099 1.5127 1.5155 1.5177 1.5182 1.5207



2. Functions & Graphing

2.1 Graphing Mathematical Functions

In this lesson, you will learn how to use R to graph math-
ematical functions . The MOSAIC package .

You will be using a hand-
ful of functions in R, such as
plotFun() and makeFun() ,
many of which are provided by
the mosaic add-on package. To
use these functions, you must
Þrst tell R to load the package.
This can be done with this R
command.

require ( mosaic )

If you get an error message,
it is likely because the package
has not yet been installed on
your computer. Doing so is
easy:

install.packages ( "mosaic" )

You need install the package
only once. (It may already
have been done for you.) But
you need to load the mosaic
package each time you restart
R.

ItÕs important to point out at the beginning that much
of what you will be learning Ñ much of what will be new
to you here Ñ actually has to do with the mathematical
structure of functions and not R.

Recall that a function is a transformation from an in-
put to an output. Functions are used to represent the re-
lationship between quantities. In evaluating a function ,
you specify what the input will be and the function trans-
lates it into the output.

In much of the traditional mathematics notation you
have used, functions have names like f or g or y, and the
input is notated as x. Other letters are used to represent
parameters. For instance, itÕs common to write the equa-
tion of a line this way

y = mx + b.

In order to apply mathematical concepts to realistic set-
tings in the world, itÕs important to recognize three things
that a notation like y = mx + b does not support well:

1. Real-world relationships generally involve more than
two quantities. (For example, the Ideal Gas Law in
chemistry, PV = nRT, involves three variables: pres-
sure, volume, and temperature.) For this reason, you
will need a notation that lets you describe the multiple
inputs to a function and which lets you keep track of
which input is which.

2. Real-world quantities are not typically named x and y,
but are quantities like Òcyclic AMP concentrationÓ or
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Òmembrane voltageÓ or Ògovernment expendituresÓ.
Of course, you could call all such things x or y, but itÕs
much easier to make sense of things when the names
remind you of the quantity being represented.

3. Real-world situations involve many different relation-
ships, and mathematical models of them can involve
different approximations and representations of those
relationships. Therefore, itÕs important to be able to
give names to relationships, so that you can keep track
of the various things you are working with.

For these reasons, the notation that you will use needs
to be more general than the notation commonly used in
high-school algebra. At Þrst, this will seem odd, but the
oddness doesnÕt have to do so much with the fact that
the notation is used by the computer so much as for the
mathematical reasons given above.

But there is one aspect of the notation that stems di-
rectly from the use of the keyboard to communicate with
the computer. In writing mathematical operations, youÕll
use expressions likea* b and 2^n and a/b rather than the
traditional abor 2n or a

b, and you will use parentheses
both for grouping expressions and for applying functions
to their inputs.

In plotting a function, you need to specify several
things:

What is the function.This is usually given by an expres-
sion, for instance m* x + b or A* x^2 or sin(2 * t) Later
on, you will also give names to functions and use those
names in the expressions, much like sin is the name of
a trigonometric function.

What are the inputs.Remember, thereÕs no reason to as-
sume that x is always the input, and youÕll be using
variables with names like G and cAMP. So you have to
be explicit in saying whatÕs an input and whatÕs not.
The R notation for this involves the ~ (ÒtildeÓ) symbol.
For instance, to specify a linear function with x as the
input, you can write m* x + b ~ x

What range of inputs to make the plot over.Think of this as
the bounds of the horizontal axis over which you want
to make the plot.



16 start r in calculus

The values of any parameters.Remember, the notation
m* x+b ~ x involves not just the variable input x but
also two other quantities, mand b. To make a plot of
the function, you need to pick speciÞc values for mand
b and tell the computer what these are.

The plotFun() operator puts this all together, taking
the information you give and turning it into a plot. HereÕs
an example of plotting out a linear function:

plotFun ( 3* x - 2 ÷ x, x.lim =range ( 0, 10) )

x
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x 
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2 4 6 8Often, itÕs natural to write such relationships with
the parameters represented by symbols. (This can help
you remember which parameter is which, e.g., which is
the slope and which is the intercept. When you do this,
remember to give a speciÞc numerical value for the pa-
rameters, like this:

plotFun ( m* x + b ÷ x, x.lim =range ( 0, 10), m=3, b=- 2
)
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m
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Try these examples:

plotFun ( A* x^2 ÷ x, x.lim =range (- 2, 3), A=10)
plotFun ( A* x^2 ÷ x, add=TRUE, col ="red" , A=5)
plotFun ( cos ( t ) ÷ t , t.lim =range ( 0, 4* pi ))

Sometimes, you want to give a function a name so
that you can refer to it concisely later on. You can use
makeFun() to create a function and ordinary assignment
to give the function a name. For instance:

g = makeFun( 2* x^2 - 5* x + 2 ÷ x)

Once the function is named, you can evaluate it by
giving an input. For instance:

g( x=2)

[1] 0

g( x=5)

[1] 27
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Plotting a named function is done in the same way, for
instance:

plotFun ( g( x) ÷ x, x.lim =range (- 5, 5))

x

g(
x)

0

20

40

60

80

!4 !2 0 2 4Of course, you can also construct new expressions
from the function you have created. Try this somewhat
complicated expression:

plotFun ( sqrt ( abs ( g( x))) ÷ x, x.lim =range (- 5, 5))
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Exercises

Exercise 1 Try out this command:

plotFun ( A* x^2 ÷ A, A.lim =range (- 2, 3),

x=10)

A

A
 *

 x
^2

!200

!100

0

100

200

300

!1 0 1 2

Explain why the graph doesnÕt look like a
parabola, even though itÕs a graph ofAx2.

Exercise 2
Translate each of these expressions in tra-

ditional math notation into a plot made by
plotFun() . Hand in the command that you
gave to make the plot (not the plot itself).

(a) 4x $ 7 in the window x from 0 to 10.

(b) cos 5x in the window x from $ 1 to 1.

(c) cos 2t in the window t from 0 to 5.

(d)
#

t cos 5t in the window t from 0 to 5.
(Hint:

!
(t) is sqrt(t) .)

Exercise 3 Find the value of each of
the functions above at x = 10.543 or at
t = 10.543. (Hint: Give the function a name
and compute the value using an expression
like g(x=10.543) or f(t=10.543) .)

Pick the closest numerical value

(a) 32.721 34.721 35.172 37.421 37.721

(b) -0.83 -0.77 -0.72 -0.68 0.32 0.42 0.62

(c) -0.83 -0.77 -0.72 -0.68 -0.62 0.42 0.62

(d) -2.5 -1.5 -0.5 0.5 1.5 2.5

Exercise 4
Reproduce each of these two plots. Hand

in the command you used to make the iden-
tical plots:

x
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Exercise 5
What happens when you use a symbolic

parameter (e.g., min m* x + b x , but try
to make a plot without selecting a speciÞc
numerical value for the parameter?

Exercise 6
What happens when you donÕt specify a

range for an input, but just a single number,
as in the second of these two commands:

plotFun ( 3* x ÷ x, x.lim =range ( 1, 4))

plotFun ( 3* x ÷ x, x.lim =14)

Give a description of what happened and
speculate on why.
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2.2 Making Scatterplots from Data

Often, the mathematical models that you will create will
be motivated by data. For a deep appreciation of the re-
lationship between data and models, you will want to
study statistical modeling. Here, though, we will take a
Þrst cut at the subject in the form of curve Þtting , the pro-
cess of setting parameters of a mathematical function to
make the function a close representation of some data.

This means that you will have to learn something
about how to access data in computer Þles, how data are
stored, and how to visualize the data. Fortunately, R and
the mosaic package make this straightforward.

The data Þles you will be using are stored as spread-
sheets on the Internet. Typically, the spreadsheet will
have multiple variables; each variable is stored as one
column. (The rows are Òcases,Ó sometimes called Òdata
points.Ó) To read the data in to R, you need to know the
name of the Þle and its location.

The function for reading such Þles from their ap-
pointed place on the Internet is called fetchData() .

One of the Þles that fetchData() can read is "Income-Housing.csv" .
This Þle gives information from a survey on housing con-
ditions for people in different income brackets in the US. 2 2 Susan E. Mayer (1997) What

money canÕt buy: Family income
and childrenÕs life chancesHar-
vard Univ. Press p. 102.

HereÕs how to read it into R:

housing = fetchData ( "Income-Housing.csv" )

There are two important things to notice about the
above statement. First, the fetchData() function is re-
turning a value that is being stored in an object called
housing . The choice of housing as a name is arbitrary;
you could have stored it as x or Equador or whatever. ItÕs
convenient to pick names that help you remember whatÕs
being stored where.

Second, the name"Income-Housing.csv" is surrounded
by quotation marks. These are the single-character dou-
ble quotes, that is, " and not repeated single quotes Õ Õ.
Whenever you are reading data from a Þle, the name of
the Þle should be in such single-character double quotes.
That way, R knows to treat the characters literally and not
as the name of an object such ashousing .
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Once the data are read in, you can look at the data just
by typing the name of the object (without quotes!) that is
holding the data. For instance,

housing

Income IncomePercentile CrimeProblem AbandonedBuildings
1 3914 5 39.6 12.6
2 10817 15 32.4 10.0
3 21097 30 26.7 7.1
4 34548 50 23.9 4.1
5 51941 70 21.4 2.3
6 72079 90 19.9 1.2

All of the variables in the data set will be shown (al-
though just four of them are printed here).

You can see the names ofall of the variablesin a com-
pact format with the names() command:

names( housing )

[1] "Income" "IncomePercentile" "CrimeProblem"
[4] "AbandonedBuildings" "IncompleteBathroom" "NoCentralHeat"
[7] "ExposedWires" "AirConditioning" "TwoBathrooms"

[10] "MotorVehicle" "TwoVehicles" "ClothesWasher"
[13] "ClothesDryer" "Dishwasher" "Telephone"
[16] "DoctorVisitsUnder7" "DoctorVisits7To18" "NoDoctorVisitUnder7"
[19] "NoDoctorVisit7To18"

When you want to access one of the variables, you
give the name of the whole data set followed by the name
of the variable, with the two names separated by a $ sign,
like this:

housing $Income

[1] 3914 10817 21097 34548 51941 72079

housing $CrimeProblem

[1] 39.6 32.4 26.7 23.9 21.4 19.9

Even though the output from names() shows the vari-
able names in quotation marks, you wonÕt use quotations
around the variable names.
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Spelling and capitalization are important. If you make
a mistake, no matter how trißing to a human reader, R
will not Þgure out what you want. For instance, hereÕs a
misspelling of a variable name, which results in nothing
(NULL) being returned.

housing $crim

NULL

Sometimes people like to look at datasets in a spread-
sheet format, each entry in a little cell. In RStudio, you
can do this by going to the W orkspace tab and clicking
the name of the variable you want to look at.

Figure 5: Viewing a data frame
by clicking on the object name
in the Workspace tab in RStu-
dio.

Usually the most informative presentation of data is
graphical. One of the most familiar graphical forms is
the scatter-plot , a format in which each "case" or "data
point" is plotted as a dot at the coordinate location given
by two variables. For instance, hereÕs a scatter plot of the
fraction of household that regard their neighborhood as
having a crime problem, versus the median income in
their bracket.

plotPoints ( CrimeProblem ÷ Income , data =housing )
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20000 40000 60000The R statement closely follows the English equiv-
alent: Òplot CrimeProblem versus (or, as a function of)
Income , using the data from the housing object.

If you want to plot a mathematical function over the
data, do so by Þrst giving a plot command to show the
data, then asking plotFun() to add a graph of the func-
tion:

plotPoints ( CrimeProblem ÷ Income , data =housing )
plotFun ( 40 - Income / 2000 ÷ Income ,

Income.lim =range ( 0, 80000 ), add=TRUE )
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Income
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20000 40000 60000The function drawn is not a very good match to the
data, but this reading is about how to draw graphs, not
how to choose a family of functions or Þnd parameters!

Notice the add=TRUE argument to plotFun() , which in-
structs R to add the new graph over the old one. Without
this, R would draw a brand-new graph.

The plotFun() graph-drawing function allows you to
give your mathematical function arguments of whatever
name you like. So you could add another graph to the
plot by giving a function like this:

plotFun ( 38 - x/ 3500 ÷ x, x.lim =range ( 0, 80000 ),
add=TRUE, col ="red" )

If, when plotting your data, you prefer to set the limits
of the axes to something of your own choice, you can do
this. For instance:

plotPoints ( CrimeProblem ÷ Income , data =housing ,
xlim =range ( 0, 100000 ), ylim =range ( 0, 50)

)
plotFun ( 40 - Income / 2000 ÷ Income ,
Income =range ( 0, 80000 ), add=TRUE )
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2e+044e+046e+048e+04Properly made scientiÞc graphics should have infor-
mative axis names. You can set the axis names directly in
either plotFun() or plotPoints() :

plotPoints ( CrimeProblem ÷ Income / 1000 ,
data =housing ,

xlab ="Income Bracket (USD/year)" ,
ylab ="Fraction of Households" ,
main ="Crime Problem" ,
xlim =range ( 0, 100 ), ylim =range ( 0, 45) )
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Notice that double-quotes delimit the character strings.
The argument names xlim , ylim , xlab and ylab are used
to refer to the ranges and labels of the horizontal and ver-
tical axes respectively.
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Exercises

Exercise 1
Make each of these plots:

(a) Prof. Stan Wagon (seehttp://stanwagon.

com) illustrates curve Þtting using mea-
surements of the temperature (in degrees
C) of a cup of coffee versus time (in min-
utes):

s = fetchData ( "stan-data.csv" )

plotPoints ( temp ÷ time , data =s)
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Describe in everyday English the pattern
you see in coffee cooling:

(b) HereÕs a record of the tide level in Hawaii
over about 100hours:

h = fetchData ( "hawaii.csv" )

plotPoints ( water ÷ time , data =h)
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Describe in everyday English the pattern
you see in the tide data:

Exercise 2
Construct the R commands to duplicate

each of these plots. Hand in your commands
(not the plot):

(a) The data Þle "utilities.csv" has utility
records for a house in St. Paul, Minnesota,
USA. Make this plot, including the labels:

Ave. Monthly Temp.

Month (Jan=1, Dec=12)
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(b) From the "utilities.csv" data Þle, make
this plot of household monthly bill for
natural gas versus average temperature.
The line has slope $ 5 $US/degree and
intercept 300 $US.

Natural Gas Use

Temperature (F)

E
xp

en
di

tu
re

s
(U

S
D

p
er

m
on

th
)

0

50

100

150

200

250

20 40 60 80



24 start r in calculus

2.3 Creating New Mathematical Functions

A function is an important concept in mathematics, used
throughout science and technology and the basis for or-
ganizing computer programs. As you know, a function is
a transformation from inputs to an output. Mathematical
functions have a narrower deÞnition, for example that the
same inputs will always produce the same output.

In creating a function, you need to specify two things:

¥ What are the inputs. Another word used for ÒinputsÓ
is arguments.

¥ What is the rule that maps the input to an output.

Since functions can have more than one input, itÕs very
helpful to be able to name the individual inputs so that
you can refer to them without any ambiguity.

R provides a standard syntax for creating a function,
and for giving the function a name so that you can refer
to it later. HereÕs an example, creating a function calledh:

h = function( x) { 3* x + 5 }

As you can see, part of this statement is assignment:
storing the function under the name h. The function itself
is created with the keyword function . Following the key-
word is a pair of parentheses, within which is the name
of the argument. (YouÕll create functions with multiple ar-
guments in a little bit.) Finally, there is a matched pair of
curly braces Ñ the { } Ñ that contains the rule for trans-
forming the inputs to the output. In this example, the
rule is a very simple mathematical statement: multiply
the input by 3, then add 5.

To use a function, you give the name, followed by
parentheses containing the value of the input. For in-
stance:

h( 2)

[1] 11

When there is more than one input, separate the names
of the different inputs by commas. For instance:
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g = function( x, m, b) { m* x + b}

To use such a function, you give all three inputs.
Keeping track of which input is which requires some at-
tention. In the function g, the Þrst input will become x,
the second m, and the third b, like this:

g( 2, 3, 5)

[1] 11

If you neglect to give one of the required inputs, you
will get an error message.

g( 2, 3)

Error: ÕbÕ is missing

To remind you which argument is which, itÕs help-
ful to show the function itself. You do this by giving the
name of the function as a command, without the parenthe-
ses and arguments.

h

function(x){ 3 * x + 5 }

g

function(x, m, b) {m * x + b}

It is easy to make mistakes with the order of the ar-
guments. To help you keep things straight, you can refer
to the arguments by name, rather than by position. For
instance:

g( x=2, b=5, m=3)

[1] 11

g( m=3, x=2, b=5)

[1] 11

Sometimes, you will want to deÞne values for param-
eters and then pass them into functions. You can do this
easily:
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intercept = 5
slope = 3
g( x=2, m=slope , b=intercept )

[1] 11



functions & graphing 27

Exercises

Exercise 1 Create a function named
hypothenuse that takes as arguments the
lengths of the sides of a right triangle
and produces as an output the length of
the hypothenuse. (Hint: Remember the
Pythagorean Theorem: a2 + b2 = c2.)

Use your function to calculate the hy-
pothenuse of a right triangle with edge
lengths 7 and 19.

20.248 20.348 20.448 20.538

Exercise 2
HereÕs the formula for the gravitational

force between two masses,m1 and m2 sepa-
rated by a distance r. the universal constant
of gravity G = 6.67384! 10$ 11 meters3 kg$ 1

s$ 2

F =
Gm1m2

r2 .

G is the universal constant of gravity
G = 6.67384! 10$ 11 meters3 kg$ 1 s$ 2.
(When m1 and m2 are given in kilograms,

and r in meters, the formula gives a force
with units of Newtons.)

Write a function, to be named
grav.force that takes m1, m2, and r as in-
puts. (In the computer equivalent of scien-
tiÞc notation, the value of G is 6.67384e-11 .)

Use your function to calcu-
late the force between two 100
kg objects separated by1 meter.
6.6738e-9 6.6738e-8 6.6738e-7 6.673e-6

Exercise 3 Try this function that doesnÕt
take any arguments.

date ()

Explain why this is not a single-valued
function.

HereÕs a function that generates random
numbers.

runif ( 1)

[1] 0.9246

Is this a single-valued function?
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2.4 Graphing Functions of Two Variables

YouÕve already seen how to plot a graph of a function of
one variable, for instance:

plotFun ( 95- 73* exp (- .2 * t ) ÷ t ,
t.lim =range ( 0, 20))
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5 10 15This lesson is about plotting functions of two vari-
ables. For the most part, the format used will be a con-
tour plot, but itÕs also possible to make the graph of the
function, as youÕll see later.

You use the sameplotFun() function to plot with two
input variables. The only change is that you need to list
the two variables on the right of the ~ sign, and you need
to give a range for each of the variables. For example:

plotFun ( sin ( 2* pi * t / 10) * exp (- .2 * x) ÷ t & x,
t.lim =range ( 0, 20), x.lim =range ( 0, 10))
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Each of the contours is labeled, and by default the plot
is Þlled with color to help guide the eye. If you prefer
just to see the contours, without the color Þll, use the
filled=FALSE argument.

plotFun ( sin ( 2* pi * t / 10) * exp (- .2 * x) ÷ t & x,

t.lim =range ( 0, 20), x.lim =range ( 0, 10), filled =FALSE)
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Occasionally, people want to see the function as a sur-
face, plotted in 3 dimensions. You can get the computer
to display a perspective 3-dimensional plot by giving the
optional argument surface=TRUE .

plotFun ( sin ( 2* pi * t / 10) * exp (- .2 * x) ÷ t & x,

t.lim =range ( 0, 20), x.lim =range ( 0, 10), surface =TRUE)

0
5

10
15

20

0
2

4
6

8
10

-0.5

0.0

0.5

tx

If you are using RStudio, you can press on the little
gear icon in the plot and you will have a slider to con-
trol the viewpoint. (Try moving the slider to the right,
release it, and wait for the picture to update.)

ItÕs very hard to read quantitative values from a sur-
face plot Ñ the contour plots are much more useful for
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that. On the other hand, people seem to have a strong in-
tuition about shapes of surfaces. Being able to translate in
your mind from contours to surfaces (and vice versa) is a
valuable skill.

Sometimes you will want to create and plot a
named function. When the function has multiple argu-
ments, you need to be aware of which argument is which
when you plot it, or you might get them reversed. HereÕs
a safe strategy.

g = makeFun( sin ( 2* pi * t / 10) * exp (- .2 * x) ÷ t & x)
plotFun ( g( t =t , x=x) ÷ t & x,

t.lim =range ( 0, 20), x.lim =range ( 0, 10))
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The point of the seemingly redundant t=t and x=x is
to avoid mistaking the arguments one for the other. The
name to the left of the = sign gives the name of the input
variable. The expression g(t=t,x=x) says to assign the
plotting variable t (which will range from 0 to 20) to the
input named t .

So long as you use the input names, the order doesnÕt
matter:

g( t =7, x=4)

[1] -0.4273

g( x=4, t =7)

[1] -0.4273

But if you donÕt use the names, you might end up
assigning the input value to the wrong input:

g( 7, 4)

[1] -0.4273

g( 4, 7)

[1] 0.1449
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Exercises

Exercise 1
Refer to this contour plot:

t
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2 2

4 4

6 6

Approximately what is the value of the
function at each of these (x, t) pairs? Pick the
closest value

(a) x = 4,t = 10: -6 -5 -4 -2 0 2 4 5 6
(b) x = 8,t = 10: -6 -5 -4 -2 0 2 4 5 6
(c) x = 7,t = 0: -6 -5 -4 -2 0 2 4 5 6
(d) x = 9,t = 0: -6 -5 -4 -2 0 2 4 5 6

Exercise 2
Describe the shape of the contours pro-

duced by each of these functions. (Hint:
Make the plot! Caution: Use the mouse to
make the plotting frame more-or-less square
in shape.)

(a) The function

plotFun ( sqrt (( v- 3) ^2+2* ( w- 4) ^2) ÷ v

& w,

v.lim =range ( 0, 6), w.lim =range ( 0, 6))

has contours that are

A Parallel Lines
B Concentric Circles
C Concentric Ellipses
D X Shaped

(b) The function

plotFun ( sqrt ( ( v- 3) ^2+( w- 4) ^2 ) ÷ v

& w,

v.lim =range ( 0, 6), w.lim =range ( 0, 6))

has contours that are

A Parallel Lines
B Concentric Circles
C Concentric Ellipses
D X Shaped

(c) The function

plotFun ( 6* v- 3* w+4 ÷ v & w,

v.lim =range ( 0, 6), w.lim =range ( 0, 6))

has contours that are:

A Parallel Lines
B Concentric Circles
C Concentric Ellipses
D X Shaped
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2.5 Splines & Smoothers

Mathematical models attempt to capture patterns in the
real world. This is useful because the models can be more
easily studied and manipulated than the world itself. One
of the most important uses of functions is to reproduce or
capture or model the patterns that appear in data.

Sometimes, the choice of a particular form of function
Ñ exponential or power-law, say Ñ is motivated by an
understanding of the processes involved in the pattern
that the function is being used to model. But other times,
all thatÕs called for is a function that follows the data and
that has other desirable properties, for example is smooth
or increases steadily.

ÒSmoothersÓ and ÒsplinesÓ are two kinds of general-
purpose functions that can capture patterns in data, but
for which there is no simple algebraic form. Creating
such functions is remarkably easy, so long as you can free
yourself from the idea that functions must always have
algebraic formulas like f (x) = ax2 + b .

Smoothers and splines are deÞned not by algebraic
forms and parameters, but by data and algorithms. To il-
lustrate, consider some simple data. The data setLoblolly
contains 84 measurements of the age and height of loblolly
pines.

pine = fetchData ( "Loblolly" )
plotPoints ( height ÷ age , data =pine )
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Several three-year old pines of very similar height
were measured and tracked over time: age Þve, age ten,
and so on. The trees differ from one another, but they
are all pretty similar and show a simple pattern: linear
growth at Þrst which seems to low down over time.

It might be interesting to speculate about what sort of
algebraic function the loblolly pines growth follows, but
any such function is just a model. For many purposes,
measuring how the growth rate changes as the trees age,
all thatÕs needed is a smooth function that looks like the
data. LetÕs consider two:

¥ A Òcubic splineÓ, which follows the groups of data
points and curves smoothly and gracefully.
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f1 = spliner ( height ÷ age , data =pine )

¥ A Òlinear interpolantÓ, which connects the groups of
data points with straight lines.

f2 = connector ( height ÷ age , data =pine )

The deÞnitions of these functions may seem strange at
Þrst Ñ they are entirely deÞned by the data: no parame-
ters! Nonetheless, they are genuine functions and can be
worked with like other functions. For example, you can
put in an input and get an output:

f1 ( age=8)

[1] 20.68

f2 ( age=8)

[1] 20.55

You can graph them:

plotFun ( f1 ( age ) ÷ age , age.lim =range ( 0, 30))
plotFun ( f2 ( age ) ÷ age , add=TRUE, col ="red" )
plotPoints ( height ÷ age , data =pine , add=TRUE)
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5 10 15 20 25In all respects, these are perfectly ordinary functions.
All respects but one: There is no simple formula for them.
YouÕll notice this if you ever try to look at the computer-
language deÞnition of the functions:

f2

function (age)
{

x <- get(fnames[2])
if (connect)

SF(x)
else SF(x, deriv = deriv)

}
<environment: 0x105c7a868>
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ThereÕs almost nothing here to tell you what the func-
tion is. The deÞnition refers to the data itself which has
been stored in an Òenvironment.Ó These are computer-age
functions, not functions from the age of algebra.

As you can see, the spline and linear connector func-
tions are quite similar, except for the range of inputs out-
side of the range of the data. Within the range of the data,
however, both types of functions go exactly through the
center of each age-group.

Splines and connectors are not always what you will
want, especially when the data are not divided into dis-
crete groups, as with the loblolly pine data. For instance,
the trees data set is measurements of the volume, girth,
and height of black cherry trees. The trees were felled
for their wood, and the interest in making the measure-
ments was to help estimate how much usable volume of
wood can be gotten from a tree, based on the girth (that
is, circumference) and height. This would be useful, for
instance, in estimating how much money a tree is worth.
However, unlike the loblolly pine data, the black cherry
data does not involve trees falling nicely into deÞned
groups.

cherry = fetchData ( "trees" )
plotPoints ( Volume÷Girth , data =cherry )
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10 15 20ItÕs easy enough to make a spline or a linear connec-
tor:

g1 = spliner ( Volume÷Girth , data =cherry )
g2 = connector ( Volume÷Girth , data =cherry )
plotFun ( g1( x) ÷ x, x.lim =range ( 8, 18), xlab ="Girth
(inches)" )
plotFun ( g2( x) ÷ x, add=TRUE, col ="red" )
plotPoints ( Volume ÷ Girth , data =cherry , add=TRUE)

The two functions both follow the data ... but a bit too
faithfully! Each of the functions insists on going through
every data point. (The one exception is the two points
with girth of 13 inches. ThereÕs no function that can go
through both of the points with girth 13, so the functions
split the difference and go through the average of the two
points.)

Girth (inches)

g1
(x

)

10

20

30

40

50

60

10 12 14 16



34 start r in calculus

ItÕs hard to believe that the rapid up-and-down wig-
gling is of the functions is realistic. When you have rea-
son to believe that a smooth function is more appropriate
than one with lots of ups-and-downs, a different type of
function is appropriate: a smoother.

g3 = smoother ( Volume ÷ Girth , data =cherry ,
span =0.5 )
plotFun ( g3( x) ÷ x, x.lim =range ( 8, 18), xlab ="Girth
(inches)" )
plotPoints ( Volume÷Girth , data =cherry , add=TRUE)
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Smoothers are well named: they construct a smooth
function that goes close to the data. You have some con-
trol over how smooth the function should be. The param-
eter span governs this:

g4 = smoother ( Volume ÷ Girth , data =cherry ,
span =1.0 )
plotFun ( g4( x) ÷ x, x.lim =range ( 8, 18), xlab ="Girth
(inches)" )
plotPoints ( Volume÷Girth , data =cherry , add=TRUE)
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Of course, often you will want to capture relation-
ships where there is more than one variable as the input.
Smoothers do this very nicely; just specify which vari-
ables are to be the inputs.

g5 = smoother ( Volume ÷ Girth +Height , data =cherry ,
span =1.0 )
plotFun ( g5( g, h) ÷ g & h,

g.lim =range ( 8, 18), h.lim =range ( 60, 90))
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When you make a smoother or a spline or a linear
connector, remember these rules:

¥ You need a data frame that contains the data.

¥ You use the formula with the variable you want as the
output of the function on the left side of the tilde, and
the input variables on the right side.

¥ The function that is created will have input names that
match the variables you speciÞed as inputs. (For the
present, only smoother will accept more than one input
variable.)
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¥ The smoothness of asmoother function can be set by
the span argument. A span of 1.0 is typically pretty
smooth. The default is 0.5.

¥ When creating a spline, you have the option of declar-
ing monotonic=TRUE . This will arrange things to avoid
extraneous bumps in data that shows a steady upward
pattern or a steady downward pattern.

When you want to plot out a function, you need of
course to choose a range for the input values. ItÕs often
sensible to select a range that corresponds to the data on
which the function is based. You can Þnd this with the
range() command, e.g.

min ( Height , data =cherry )

[1] 63

max( Height , data =cherry )

[1] 87
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Exercises

Exercise 1
The Orange data set contains data on the

circumference and age of trees.

orange = fetchData ( "Orange" )

names( orange )

[1] "Tree" "age" "circumference"

(a) Construct a smoother of circumference (in
cm) as a function of age (in days), with
span=1 . WhatÕs the value of the function
for age 1000days?
127.41 128.32 130.28 132.08 133.12 138.20

(b) Construct a smoother of circumference
versus age with span=10 . WhatÕs the
value for age 1000days?
127.41 128.32 130.28 132.08 133.12 138.20

(c) How does the shape of the graph of the
span=10 smoother differ from that of the
span=1 smoother?

A The span=10 smoother is
always above the span=1

smoother.
B The span=10 smoother is

always below the span=1

smoother.
C The span=10 smoother is

straighter than the span=1

smoother.

Exercise 2
The cherry-tree data gives wood volume

(in cubic feet) along with height (in feet) and
girth (in inches Ñ even though the name
ÒGirthÓ is used, itÕs really a diameter).

Construct a smoother of two variables
for the cherry data with span=1 . (Warning:
Be careful to match the capitalization of the
names).

WhatÕs the value when height is50 feet
and ÒGirthÓ (that is, diameter) is15 inches?

24.4 25.5 26.6 27.7 28.8

Exercise 3
The data setBodyFat.csv contains sev-

eral body measurements made on a group
of 252men. YouÕre going to look at theses
variables:

¥ Weight Ñ the total body weight in
pounds.

¥ BodyFat Ñ the percentage of total weight
that is fat.

¥ Abdomen Ñ the circumference at the waist
in cm.

(a) Construct a smoother of BodyFat as a
function of Weight with span=1 .

(i) What is the value of this function for
Weight=150 ? 13.46 14.36 16.34

(ii) WhatÕs the general shape of the func-
tion?

A Sloping up and curved down-
wards

B Sloping down and curved
upwards

C Straight line sloping down-
wards

(b) Construct a smoother of BodyFat as a
function of Abdomen with span=1 .

(i) What is the value of this function for
Abdomen=100?
23.34 23.85 24.43 25.23 26.74 27.25

(ii) WhatÕs the general shape of the func-
tion?

A Sloping up and curved down-
wards

B Sloping down and curved
upwards

C Straight line sloping down-
wards

(c) Construct a smoother of BodyFat as a
function of both Abdomen and Weight with
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span=1 . What is the value of this function
for Abdomen=100 and Weight=150 ?
23.34 23.85 24.43 25.23 26.74 27.25

Make a contour plot of your smoother
function. Using the plot, answer this
question: How does body fat percent-
age change when increasing weight from
140to 240pounds, but holding abdominal

circumference constant at 90cm?

A Body fat percentage doesnÕt
change on weight.

B Body fat percentage goes down
with increasing weight.

C Body fat percentage goes up
with increasing weight.



3. Fitting Functions to Data

Often, you have an idea for the form of a function for a
model and you need to select parameters that will make
the model function a good match for observations. The
process of selecting parameters to match observations is
called model Þtting .

To illustrate, the data in the Þle "utilities.csv"
records the average temperature each month (in degrees
F) as well as the monthly natural gas usage (in cubic feet,
ccf). There is, as you might expect, a strong relationship
between the two.

u = fetchData ( "utilities.csv" )
plotPoints ( ccf ÷ temp , data =u)
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Many different sorts of functions might be used to
represent these data. One of the simplest and most com-
monly used in modeling is a straight-line function f (x) =
Ax + B. In function f (x), the variable x stands for the
input, while A and B are parameters. ItÕs important to
remember what are the names of the inputs and outputs
when Þtting models to data Ñ you need to arrange for
the name to match the corresponding data.

With the utilities data, the input is the temperature,
temp . The output that is to be modeled is ccf . To Þt the
model function to the data, you write down the formula
with the appropriate names of inputs, parameters, and
the output in the right places:

f = fitModel ( ccf ÷ A* temp + B, data =u)

The output of fitModel() is a function of the same
form as you speciÞed with speciÞc numerical values
given to the parameters in order to make the function
best match the data.
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plotFun ( f ( temp )÷temp , temp.lim =range ( 0, 80))
plotPoints ( ccf ÷ temp , data =u, add=TRUE)
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You can add other functions into the mix easily. For
instance, you might think that sqrt(temp) works in there
somehow. Try it out!

f2 = fitModel ( ccf ÷ A* temp + B + C* sqrt ( temp ),
data =u)

plotFun ( f2 ( temp )÷temp , temp.lim = range ( 0, 80))
plotPoints ( ccf ÷ temp , data =u, add=TRUE)
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This example has involved just one input variable.
Throughout the natural and social sciences, a very im-
portant and widely used technique is to use multiple
variables in a projection. To illustrate, look at the data
in "used-hondas.csv" on the prices of used Honda auto-
mobiles.

hondas = fetchData ( "used-hondas.csv" )
head ( hondas )

Price Year Mileage Location Color Age
1 20746 2006 18394 St.Paul Grey 1
2 19787 2007 8 St.Paul Black 0
3 17987 2005 39998 St.Paul Grey 2
4 17588 2004 35882 St.Paul Black 3
5 16987 2004 25306 St.Paul Grey 3
6 16987 2005 33399 St.Paul Black 2

As you can see, the data set includes the variables
Price , Age, and Mileage . It seems reasonable to think that
price will depend both on the mileage and age of the car.
HereÕs a very simple model that uses both variables:

carPrice1 = fitModel (
Price ÷ A + B* Age + C* Mileage ,
data =hondas )

You can plot that out as a mathematical function:

plotFun ( carPrice1 ( Age=age ,
Mileage =miles )÷age &miles ,
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age.lim =range ( 2, 8),
miles.lim =range ( 0, 60000 ))
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A somewhat more sophisticated model might include
whatÕs called an ÒinteractionÓ between age and mileage,
recognizing that the effect of age might be different de-
pending on mileage.

carPrice2 = fitModel ( Price ÷
A+B* Age+C* Mileage +D* Age* Mileage ,

data =hondas )

Again, once the function has been Þtted, you can plot
it in the ordinary way:

plotFun ( carPrice2 ( Age=age , Mileage =miles )÷age &

miles ,
age.lim =range ( 0, 10),

miles.lim =range ( 0, 100000 ))
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Notice that the price of a used car goes down with age
and with mileage. This is hardly unexpected. The Þtted
model quantiÞes the relationship, and from the graph
you can see that the effect of2 years of age is roughly the
same as20,000miles.

Each of the above models has involved what are called
linear parameters . Often, there are parameters in func-
tions that appear in a nonlinear way. Examples include
k in f (t) = A exp(kt) + C and P in A sin( 2!

P t) + C. The
idea of function Þtting applies perfectly well to nonlinear
parameters, but the task is harder for the computer. YouÕll
get the best results if you give the computer a hint for the
values of nonlinear parameters.

To illustrate, consider the "Income-Housing.csv" data
which shows an exponential relationship between the
fraction of families with two cars and income:

inc = fetchData ( "Income-Housing.csv" )
plotPoints ( TwoVehicles ÷ Income , data =inc )
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The pattern of the data suggests exponential ÒdecayÓ
towards close to 100% of the families having two vehi-
cles. The mathematical form of this exponential function
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is Aexp($ kY) + C. A and C are unknown linear param-
eters. k is an unknown nonlinear parameter Ñ it will be
negative for exponential decay.

Suppose you make a guess atk. The guess doesnÕt
need to be completely random; you can see from the
data themselves that the Òhalf-lifeÓ is something like
$25,000. The parameter k is corresponds to the half life,
k = ln(0.5)/half-life, so a good guess for k is ln(0.5)/25000,
that is

kguess = log ( 0.5 )/ 25000
kguess

[1] -2.773e-05

ItÕs also helpful to have reasonable guesses for the
other parameters. You can make reasonable estimates
from the graph. A corresponds to the "leveling-off" value
of the function, which is around 100. B is negative and
about the same size asA (since essentially nobody has
two vehicles for a family income of 0). Starting with those
guesses,fitModel() can Þnd good-Þtting values for the
parameters:

f = fitModel ( TwoVehicles ÷ A + B* exp ( k* Income ),
data =inc ,

start =list ( A=100 , B=- 100 , k=log ( 0.5 )/ 25000 ))

plotFun ( f ( Income )÷Income ,
Income.lim =range ( 0, 100000 ))
plotPoints ( TwoVehicles ÷ Income , data =inc ,
add=TRUE)
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The graph goes satisfyingly close to the data points.
But you can also look at the numerical values of the func-
tion for any income:

f ( Income =10000 )

[1] 33.78

f ( Income =50000 )

[1] 85.44
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ItÕs particularly informative to look at the values of the
function for the speciÞc Income levels in the data used for
Þtting, that is, the data frame inc :

f ( Income =inc $Income )

[1] 16.38 35.82 56.67 74.01 86.45 93.48

The residuals are the difference between these model
values and the actual values of TwoVehicles in the data
set:

resids = inc $TwoVehicles - f ( Income =inc $Income )
resids

[1] 0.9247 -1.5186 -0.2713 1.2948 0.1478 -0.5774

This set of numbers is a vector; its length tells how
"far" the function is from the data. Recall that the square-
length of a vector is the sum of squared residuals

sum( resids ^2)

[1] 5.267

The "distance" Ñ or rather the square distance Ñ
between the function and the data is the sum of square
residuals.

Keep in mind that the sum of square residuals is a
function of the parameters. The parameters are being
chosen by fitModel() in order to make the sum of square
residuals as small as possible, in other words, to Þt the
function to the data.
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Exercises

Exercise 1 The data in "stan-data.csv"

contains measurements made by Prof. Stan
Wagon of the temperature of a cooling cup of
hot water. The variables are temp and time :
temperature in degrees C and time in min-
utes.

Find the best value of k in the exponen-
tial model A + Bexp(kt).

(a) WhatÕs the value ofk that gives the small-
est RMS error? (Pick the closest one.)
-2.00 -0.20 -0.02 -0.002 -0.0002

(b) What are the units of this k? (This is not
an R question, but a mathematical one.)

A seconds
B minutes
C per second
D per minute

Exercise 2 The "hawaii.csv" data set
contains a record of ocean tide levels in
Hawaii over a few days. The time variable
is in hours. You are going to Þt the function
f (t) = A sin

" 2!
P (t $ T0)

#
+ C. Since the tides

occur with a period of roughly 1 day, a good
guess for a starting value of P is 24 hours.

hawaii = fetchData ( "hawaii.csv" )

f = fitModel ( water ÷
A* sin ( 2* pi * ( time - T0)/ P)+ C,

start =list ( P=24, T0=0),

data =hawaii )

(a) What is the period P (in hours) that
makes the RMS error as small as possible?
23.42 24.00 24.28 24.54 24.78 25.17

(b) Plot out the data and the Þtted function.
You may notice that the Òbest ÞttingÓ
sine wave is not particularly close to the
data points. One reason for this is that
the pattern is more complicated than a
simple sine wave. You can get a better
approximation by including additional
sine functions with a period of 2 P. (This
is called a harmonic.) Overall, the model
function will be:

f 2(t) = A sin
$

2!
P

(t $ T0)
%

+

B sin
$

2!
P/2

(t $ T1)
%

+ C.

What period P (in hours) shows up as
best when you add in a harmonic to the
model?
23.42 24.00 24.28 24.54 24.78 25.17

A more complete model of tides includes
multiple periods stemming from the mul-
tiple factors involved: the earthÕs rotation,
the moonÕs revolution around the earth,
the alignment of the moon and the sun,
etc.



4. Solving

4.1 Solving Equations

Many of high-school algebra involves Òsolving.Ó In the
typical, textbook situation, you have an equation, say

3x + 2 = y

and you are asked to ÒsolveÓ the equation forx. This in-
volves rearranging the symbols of the equation in the fa-
miliar ways, e.g., moving the 2 to the right hand side and
dividing by the 3. These steps, originally termed Òbal-
ancingÓ and ÒreductionÓ are summarized in the original
meaning of the arabic word Òal-jabrÓ3 used by Muham- 3 That is, .

mad ibn Musa al-Khowarizmi (c. 780-850) in his ÒCompen-
dious Book on Calculation by Completion and BalancingÓ. This
is where our word ÒalgebraÓ originates.

High school students are also taught a variety of ad
hoctechniques for solving in particular situations. For
example, the quadratic equation ax2 + bx + c = 0 can be
solved by application of the procedures of Òfactoring,Ó or
Òcompleting the square,Ó or use of the quadratic formula:

x =
$ b±

#
b2 $ 4ac

2a
.

Parts of this formula can be traced back to at least the
year 628 in the writings of Brahmagupta, an Indian math-
ematician, but the complete formula seems to date from
Simon Stevin in Europe in 1594and was published by
RenŽ Descartes in1637.

For some problems, students are taught named opera-
tions that involve the inverse of functions. For instance, to
solve sin(x) = y, one simply writes down x = arcsin(y)
without any detail on how to Þnd arcsin beyond Òuse a
calculatorÓ or, in the old days, Òuse a table from a book.Ó
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From Equations to Zeros of Functions

With all of this emphasis on procedures such as factoring
and moving symbols back and forth around an = sign,
students naturally ask, ÒHow do I solve equations in R?Ó

The answer is surprisingly simple, but to understand
it, you need to have a different perspective on what it
means to ÒsolveÓ and where the concept of ÒequationÓ
comes in.

The general form of the problem that is typically used
in numerical calculations on the computer is that the
equation to be solved is really a function to be inverted.
That is, for numerical computation, the problem should
be stated like this:

You have a function f(x). You happen to know the form of the
function f and the value of the output y for some unknown
input value x. Your task: Þnd the input x that will produce
output y.

One way to solve such problems is to Þnd an expression
for the inverse of f . The expression for the inverse can be
difÞcult or impossible to derive, but the notion of the in-
verse function is simple. ThereÕs even a standard notation
4 to indicate the inverse of a function: f $ 1. Fortunately, 4 Many students understand-

ably but mistakenly take f $ 1

to mean 1/ f (x). The Þrst is a
function inverse, the second
is the value of the function
divided into 1.

itÕs rarely necessary to Þnd an expression for the inverse.
Instead, the problem can be handled by Þnding the zeros
of f .

If you can plot out the function f (x) for a range of
x, you can easily Þnd the zeros. Just Þnd where thex
where the function crosses the y-axis. This works for any
function, even ones that are so complicated that there
arenÕt algebraic procedures for Þnding a solution.

To illustrate, consider the function

plotFun ( sin ( x^2) * cos ( sqrt ( x^4+3)- x^2)- x+1 ÷ x,
x.lim =range (- 3, 3))
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You can see easily enough that the function crosses the
y axis somewhere between x = 1 and x = 2. You can
get more detail by zooming in around the approximate
solution:
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plotFun ( sin ( x^2) * ( cos ( sqrt ( x^4+3)- x^2))- x+1 ÷ x,
x.lim =range ( 1, 2))
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The crossing is at roughly x % 1.6. You could, of
course, zoom in further to get a better approximation.
Or, you can let the software do this for you:

findZeros ( sin ( x^2) * ( cos ( sqrt ( x^4+3)- x^2))- x+1 ÷ x,
x.lim =range ( 1, 2))

[1] 1.558

The syntax of findZeros() is very much like plotfun() ,
but now the argument x.lim is used to state where to
look for a solution.

You need only have a rough idea of where the solu-
tion is. For example:

findZeros ( sin ( x^2) * ( cos ( sqrt ( x^4+3)- x^2))- x+1 ÷ x,
x.lim =range (- 1000 , 1000 ))

[1] 1.558

You can even say, ÒI have no idea at all,Ó by telling the
software to look anywhere between $ ! and ! .

findZeros ( sin ( x^2) * ( cos ( sqrt ( x^4+3)- x^2))- x+1 ÷ x,
x.lim =range (- Inf , Inf ))

[1] 1.558

The findZeros() function will never look outside the
interval you specify. It will do a more precise job within
the interval if you can state the interval in a narrow way.

Setting up a Problem

As the name suggests,findZeros() Þnds the zeros of
functions. You can set up any solution problem in this
form. For example, suppose you want to solve ekt = 2bt

for b, knowing k, for example, k = 0.00035. You may, of
course, remember how to do this problem using loga-
rithms. But hereÕs the set up forfindZeros() :
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findZeros ( exp ( k* t ) - 2^( b* t ) ÷ b, k=0.00035 , t =1,
b.lim =range (- Inf , Inf ) )

[1] 5e-04

Note that the ÒI have no ideaÓ interval of $ ! to !
was used. YouÕre usually better off if you have a Þnite
interval in mind, which you can set afteryou get a rough
idea of the solution:

findZeros ( exp ( k* t ) - 2^( b* t ) ÷ b, k=0.00035 , t =1,
b.lim =range ( 0, 0.001 ) )

[1] 5e-04

Multiple Solutions

The findZeros() function will try to Þnd multiple solu-
tions if they exist. For instance, the equation sin (x) = 0.35
has an inÞnite number of solutions. Here are some of
them:

findZeros ( sin ( x)- 0.35 ÷ x, x.lim =range (- 20, 20) )

[1] -12.2088 -9.7823 -5.9256 -3.4991 0.3576 2.7840 6.6407
[8] 9.0672 12.9239 15.3504

Unknown Parameters

Note also that numerical values for both b and t were
given. But in the original problem, there was no state-
ment of the value of t. This shows one of the advantages
of the algebraic techniques. If you solve the problem alge-
braically, youÕll quickly see that the t cancels out on both
sides of the equation. The numerical findZeros() func-
tion doesnÕt know the rules of algebra, so it canÕt Þgure
this out. Of course, you can try other values of t to make
sure that t doesnÕt matter.

findZeros ( exp ( k* t ) - 2^( b* t ) ÷ b, k=0.00035 , t =2,
b.lim =range ( 0, 0.1 ) )

[1] 0.001
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Exercises

Problem 1
Solve the equation sin(cos(x2) $ x) $ x =

0.5 for x.
0.0000 0.1328 0.2098 0.3654 0.4217

Problem 2
Find any zeros of the function

3e$ t/5 sin( 2!
2 t) that are between t = 1 and

t = 10.
A There arenÕt any zeros in that

interval.
B There arenÕt any zeros at all!
C 2, 4, 6, 8
D 1, 3, 5, 7, 9
E 1, 2, 3, 4, 5, 6, 7, 8, 9

Problem 3
Use findZeros() to Þnd the zeros of each

of these polynomials:

(a) 3x2 + 7x $ 10
A x = $ 3.33 or 1
B x = 3.33 or 1
C x = $ 3.33 or $ 1
D x = 3.33 or $ 1
E No zeros

(b) 4x2 $ 2x + 20

A x = $ 3.33 or 1
B x = 3.33 or 1
C x = $ 3.33 or $ 1
D x = 3.33 or $ 1
E No zeros

(c) 2x3 $ 4x2 $ 3x $ 10
Which one of these is a zero?
-1.0627 0 1.5432 1.8011 2.1223 3.0363 none

(d) 7x4 $ 2x3 $ 4x2 $ 3x $ 10
Which one of these is a zero?
-1.0627 0 1.5432 1.8011 2.1223 3.0363 none

(e) 6x5 $ 7x4 $ 2x3 $ 4x2 $ 3x $ 10
Which one of these is a zero?
-1.0627 0 1.5432 1.8011 2.1223 3.0363 none

Exercise 4 Construct a smoother for the
height of pine trees as a function of age:

pine = fetchData ( "Loblolly" )

heightfun = spliner ( height ÷ age ,

data =pine )

Use findZeros() to Þnd the age at which
the height will be 35 feet.

11.3 11.9 12.2 12.7 13.1 (The use of
findZeros() will be described in Section .)



solving 49

4.2 Linear Algebra and Projection

Linear algebra operations are among the most important
in science and technology:

¥ project a single vector onto the space deÞned by a set
of vectors.

¥ take a linear combination of vectors.

In performing these operations, you will use two main
functions, project() and mat() , along with the ordinary
multiplication * and addition + operations. There is also a
new sort of operation that provides a compact description
for taking a linear combination: Òmatrix multiplication,Ó
written %* %.

To start, consider the sort of linear algebra problem
often presented in textbooks in the form of simultaneous
linear equations. For example:

x + 5y = 1
2x + $ 2y = 1
4x + 0y = 1

.

Many people will think of the above as a system of
three simultaneous equations. Another perspective is
valuable, however: treat the system as a single equation
involving vector quantities. To highlight the vectors, re-
write the equation like this:

x

&

'
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Solving this vector equation involves projecting the

vector !b =
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) onto the space deÞned by the two

vectors !v1 =
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1
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(

) and !v2 =

&

'
5

$ 2
0

(

) . The solution, x

and y will be the number of multiples of their respective
vectors needed to reach the projected vectors.

When setting this up with the R notation that you will
be using, you need to create each of the vectors!b,!v1, and
!v2. HereÕs how:
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b = c( 1, 1, 1)
v1 = c( 1, 2, 4)
v2 = c( 5,- 2, 0)

The projection is accomplished using the project()
function:

project ( b ÷ v1 + v2 )

[,1]
v1 0.32895
v2 0.09211

Read this as Òproject!b onto the subspace deÞned by
!v1 and !v1.

The output is given in the form of the multiplier on
!v1 and !v2, that is, the values of x and y in the original
problem. This answer is the ÒbestÓ in the sense that these
particular values for x and y are the ones that come the
closest to!b, that is, the linear combination that give the
projection of !b onto the subspace deÞned by!v1 and !v2.

If you want to see what that projection is, just multi-
ply the coefÞcients by the vectors and add them up. In
other words, take the linear combination

0.32894737 * v1 + 0.09210526 * v2

[1] 0.7895 0.4737 1.3158

N otice that the projected value is not exactly
the same as!b, even though it is the linear combination of
!v1 and !v2 that reaches as close to!b as possible, in other
words the projection of !b onto the subspace spanned by
!v1 and !v2. The difference between!b and itÕs projection is
called the residual . The residual is also a vector and can
be calculated by subtracting the projection from !b:

b - ( 0.32894737 * v1 + 0.09210526 * v2 )

[1] 0.2105 0.5263 -0.3158



solving 51

Matrices: Collections of Vectors

When there are lots of vectors involved in the linear com-
bination, itÕs easier to be able to refer to all of them by a
single object name. Themat() function takes the vectors
and packages them together into a matrix. It works just
like project() , but doesnÕt involve the vector thatÕs being
projected onto the subspace. Like this:

A = mat ( ÷ v1 + v2 )
A

v1 v2
[1,] 1 5
[2,] 2 -2
[3,] 4 0

Notice that A doesnÕt have any new information; itÕs
just the two vectors !v1 and !v2 placed side by side.

HereÕs the same projection, but using!v1 and !v2 pack-
aged up together in A:

x = project ( b ÷ A)
x

[,1]
Av1 0.32895
Av2 0.09211

To get the linear combination of the vectors in A, you
matrix-multiply the matrix A times the solution x. The
odd-looking %* %operator invokes matrix multiplication.

A %* % x

[,1]
[1,] 0.7895
[2,] 0.4737
[3,] 1.3158

The output from the matrix multiplication is, of course,
the same answer you got when you did the vector-wise
multiplication Òby hand.Ó
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The ÒInterceptÓ

Very often, your projections will involve a vector of all 1s.
This vector is so common that it has a name, the "inter-
cept." There is even a special notation for the intercept in
the mat() and project() functions: +1. For instance:

A = mat ( ÷ v1 + v2 + 1)
A

(Intercept) v1 v2
[1,] 1 1 5
[2,] 1 2 -2
[3,] 1 4 0

Redundancy and the ÒbestÓ solution

The instruction to ÒprojectÓ is implicit in traditional linear
algebraic notation. Rather than an imperative command
to do something, the traditional notation writes out the
relationship, e.g. A á!x = !b, and leaves it to the human
reader to determine what quantities are unknown and
what operation is appropriate to Þnd the unknown quan-
tities. For instance, if you know A and !x, then Þnding
the unknown !b in A á!x = !b means performing matrix
multiplication A %* % x.

When, as in the example introducing this chapter, itÕs
!x thatÕs unknown, it often happens that that there is no
exact solution or that there is no unique solution. The
method used by project() looks for a ÒbestÓ solution
in such cases. The appropriate meaning of ÒbestÓ can
depend on the purposes for which the unknown is being
sought.

Part of the deÞnition of ÒbestÓ thatÕs implicit in the so-
lution method used by project() is to make the residual
vector as small as possible: the so-calledleast-squares so-
lution . This is usually the standard and appropriate thing
to do.

Another aspect of ÒbestÓ thatÕs not so standard has to
do with handling cases where the vectors on the right-
hand side of ~ are linearly dependent , that is, where
there are more vectors than strictly needed to deÞne a
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unique subspace. As a simple example, consider this pro-
jection problem:

b = c( 3, 5,- 1)
v1 = c( 1, 2, 3)
v2 = c( 2, 4, 6)

The vectors v1 and v2 point in the same direction.
That is, even though there are two vectors v1 and v2 , the
two vectors deÞne a subspace that is only one dimen-
sional.

The project() method of solution handles this redun-
dancy by involving both vectors in the linear combina-
tion:

project ( b÷v1 +v2 )

[,1]
v1 0.1429
v2 0.2857

Another possible choice, commonly used in statistics,
is to consider the minimal set of vectors that deÞne the
subspace and to exclude the other vectors from the pro-
jection.

The statistical convention is
implemented by the lm() op-
erator which works much like
project() . In addition to ex-
cluding redundant vectors, lm()
includes an intercept vector
unless explicitly forbidden to
do so by a -1 term, as in this
projection of !b onto !v1 and !v2:

lm ( b÷v1 +v2 - 1)

v1 v2
0.7143 NA

The exclusion of a redundant
vector is signalled by returning
NA as its coefÞcient in the linear
combination.

The outputs from project()
and from lm() are equivalent:
they imply exactly the same
location for the projection of
!b, but the statistical method
is more ÒcompactÓ in that it
involves fewer vectors in the
linear combination.

Functions from Fitting

Often, model functions are created by Þtting a linear com-
bination of simple functions to data. The coefÞcients of
such a Þtted linear combination can be calculated us-
ing project() . Keep in mind that the value returned by
project() is a vector of coefÞcients. ThelinearModel
function does this. It works much like project() in terms
of the inputs.

Sometimes itÕs convenient to package up the results of
a Þt as a function rather than a vector of coefÞcients. To
illustrate, consider the data contained in the "cardata.csv"
Þle giving measurements on various 1978-79 model cars:

cars = fetchData ( "cardata.csv" )
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mpg pounds horsepower cylinders tons
1 16.9 3968 155 8 2.0
2 15.5 3689 142 8 1.8
3 19.2 3281 125 8 1.6
4 18.5 3585 150 8 1.8
5 30.0 1961 68 4 1.0
6 27.5 2330 95 4 1.2

Figure 6: Some of the data on
car size, power, and mileage
from "cardata.csv"

Suppose you want to construct a model function that
relates miles-per-gallon to the weight and horsepower of
the cars. You can, of course, useproject() :

project ( mpg ÷1+pounds +horsepower , data =cars )

[,1]
(Intercept) 46.932738
pounds -0.002902
horsepower -0.144931

The result is a vector of coefÞcients.
Compare the behavior of project() to that of fitModel() .

Whereas project() returns a vector of coefÞcients, fitModel()
gives back a function with named parameters. The two
are, of course, closely related. For example:

fmpg = fitModel ( mpg÷A+B* pounds +C* horsepower ,
data =cars )
fmpg ( pounds =3200 , horsepower =180 )

[1] 11.56

The fmpg is an ordinary function. You can do the
usual things with it, for instance, plot it out:

plotFun ( fmpg ( horsepower =h, pounds =p)÷h,
h.lim =range ( 50, 300 ), p=2000 )

plotFun ( fmpg ( horsepower =h, pounds =p)÷h,
add=TRUE, p=4000 , col ="red" )
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Example: An Atomic Bomb Fireball.

The data Þle blastdata.csv contains measurements of
the radius of the Þreball from an atomic bomb (in meters)
versus time (in seconds) as measured from photographs.
(See Figure7.)

Figure 7: The Þreball of an
atomic bomb measured at 6ms,
16ms, 53ms, and 100ms after
detonation. Source: G. Taylor
(1950) ÒThe Formation of a
Blast Wave by a Very Intense
ExplosionÓProc. Royal Society of
London, A, 201:1065, pp.175-186.

In the analysis of these data, itÕs appropriate to look
for a power-law relationship between radius and time.
This will show up as a linear relationship between log-
radius and log-time. In other words, we want to Þnd m
and b in the relationship log-radius = m log-time + b.
This amounts to the projection

bomb = fetchData ( "blastdata.csv" )
project ( log ( radius ) ÷ 1 + log ( time ), data =bomb )

[,1]
(Intercept) 6.2947
log(time) 0.3866

The parameter m is the coefÞcient on log-time, found
to be 0.3866. The ÒinterceptÓ vector has its name because
its coefÞcient will be the intercept, b.

You may wonder, why use project , which works
only for linear parameters, when fitModel can handle
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both linear parameters and nonlinear parameters. Un-
fortunately, the mathematics of nonlinear Þtting is more
difÞcult than that of linear algebra. This shows up by
the need to give initial guesses for the parameters in
fitModel , both linear and nonlinear. In contrast, the lin-
ear algebra methods are simpler and do not require any
initial guess for the linear parameters. 5 As a result, itÕs 5 In addition, models with only

linear parameters are generally
easier to interpret and often
provide a satisfactory repre-
sentation of the pattern seen in
data. As such, itÕs very com-
mon to use linear models even
if a nonlinear model might Þt
somewhat better. There is even
an intermediate sort of method,
called generalized linear mod-
els (GLM) that provides much
of the beneÞt of linear models
and much of the ßexibility of
nonlinear models. Perhaps the
most commonly used GLM is
called logistic regression .

common practice to make guesses for the nonlinear pa-
rameters and use linear algebra to translate these into
initial guesses for the linear parameters. Those values can
then become the initial guesses for nlsModel .

For instance, in looking at radius versus time for the
bomb data, a linear model was Þtted to log-radius versus
log-time. This linear model in log-log variables corre-
sponds to a power-law model in the variables themselves.
The relationship suggested by project() corresponds to
the power-law function radius = exp(6.295)time0.3866. You
cannot Þt the power-law model directly with project()
because the exponent parameter is nonlinear. But the pa-
rameters from project() make a nice starting guess for a
nonlinear Þt using fitModel() :

BombRadius = fitModel ( radius ÷ A* time ^b, data =bomb,
start =list ( A=exp ( 6.295 ), b=0.3866 ))

plotPoints ( radius ÷time , data =bomb)
plotFun ( BombRadius ( time )÷time , add=TRUE)
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Exercises

Exercise 1
Remember all those ÒÞnd the line that

goes through the points problemsÓ from al-
gebra class. They can be a bit simpler with
the proper linear-algebra tools.

Example: ÒFind the line that goes
through the points (2, 3) and (7,$ 8).Ó

One way to interpret this is that we are
looking for a relationship between x and
y such that y = mx + b. In vector terms,
this means that the x-coordinates of the two

points, 2 and 7, made into a vector
$

2
7

%

will be scaled by m, and an intercept vector$
1
1

%
will be scaled by b.

x = c( 2, 7)

y = c( 3,- 8)

project ( y ÷ x + 1)

[,1]

(Intercept) 7.4

x -2.2

Now you know m and b.

YOUR TASK: Using the project() function:

(a) Find the line that goes through the two
points (9, 1) and (3, 7).

A y = x + 2
B y = $ x + 10
C y = x + 0
D y = $ x + 0
E y = x $ 2

(b) Find the line that goes through the origin
(0, 0) and (2,$ 2).

A y = x + 2
B y = $ x + 10
C y = x + 0
D y = $ x + 0
E y = x $ 2

(c) Find the line that goes through (1, 3) and
(7, 9).

A y = x + 2
B y = $ x + 10
C y = x + 0
D y = $ x + 0
E y = x $ 2
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Exercise 2

(a) Find x, y, and z that solve the following:

x

&

'
1
2
4

(

) + y

&

'
5

$ 2
0

(

) + z

&

'
1

$ 2
3

(

) =

&

'
1
1
1

(

) .

WhatÕs the value ofx?
-0.2353 0.1617 0.4264 1.3235 1.5739

(b) Find x, y, and z that solve the following:

x

&

'
1
2
4

(

) + y

&

'
5

$ 2
0

(

) + z

&

'
1

$ 2
3

(

) =

&

'
1
4
3

(

) .

WhatÕs the value ofx?
-0.2353 0.1617 0.4264 1.3235 1.5739

Exercise 3
Using project() , solve these sets of si-

multaneous linear equations for x, y, and
z:

1. Two equations in two unknowns:

x + 2y = 1
3x + 2y = 7

A x = 3 and y = $ 1
B x = 1 and y = 3
C x = 3 and y = 3

2. Three equations in three unknowns:

x + 2y + 7z = 1
3x + 2y + 2z = 7

$ 2x + 3y + z = 7

A x = 3.1644,y = $ 0.8767,z =
0.8082

B x = $ 0.8767,y = 0.8082,z =
3.1644

C x = 0.8082,y = 3.1644,z =
$ 0.8767

3. Four equations in four unknowns:

x + 2y + 7z + 8w = 1
3x + 2y + 2z + 2w = 7

$ 2x + 3y + z + w = 7
x + 5y + 3z + w = 3

A x = 5.500,y = $ 7.356,z =
3.6918,w = 1.1096

B x = 1.1096,y = 3.6918,z =
$ 7.356,w = 5.500

C x = 5.500,y = $ 7.356,z =
1.1096,w = 3.6918

D x = 1.1096,y = $ 7.356,z =
5.500,w = 3.6918

4. Three equations in four unknowns:

x + 2y + 7z + 8w = 1
3x + 2y + 2z + 2w = 7

$ 2x + 3y + z + w = 7

True or False There is an exact solution.
(Hint: WhatÕs the residual?)



5. Derivatives & Differentiation

As with all computations, the operator for taking deriva-
tives, D() takes inputs and produces an output. In fact,
compared to many operators, D() is quite simple: it takes
just one input.

¥ Input: an expression using the ~ notation. Examples:
x^2~x or sin(x^2)~x or y* cos(x)~y

On the left of the ~ is a mathematical expression, written
in correct R notation, that will evaluate to a number when
numerical values are available for all of the quantities ref-
erenced. On the right of the ~ is the variable with respect
to which the derivative is to be taken. By no means need
this be called x or y; any valid variable name is allowed.

The output produced by D() is a function. The func-
tion will list as arguments all of the variables contained
in the input expression. You can then evaluate the output
function for particular numerical values of the arguments
in order to Þnd the value of the derivative function.

For example:

g = D( x^2 ÷ x)
g( 1)

[1] 2

g( 3.5 )

[1] 7

Formulas and Numerical Difference.When the expression
is relatively simple and composed of basic mathematical
functions, D() will often return a function that contains a
mathematical formula. For instance, in the above example
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g

function (x)
2 * x

For other input expressions, D() will return a function
that is based on a numerical approximation to the deriva-
tive Ñ you canÕt ÒseeÓ the derivative, but it is there inside
the numerical approximation method:

h = D( sin ( abs ( x- 3) ) ÷ x )
h

function (x)
numerical.first.partial(.function, .wrt, .hstep, match.call())
<environment: 0x103142d50>

Symbolic Parameters.You can include symbolic param-
eters in an expression being input to D() , for example:

s2 = D( A* sin ( 2* pi * t / P) + C ÷ t )

The s2( ) function thus created will work like any
other mathematical function, but you will need to specify
numerical values for the symbolic parameters when you
evaluate the function:

s2

function (t, A, P, C)
A * (cos(2 * pi * t/P) * (2 * pi/P))

s2 ( t =3, A=2, P=10, C=4 )

[1] -0.3883

plotFun ( s2 ( t , A=2, P=10, C=4) ÷ t ,
t.lim =range ( 0, 20))

t

s2
(t

, A
 =

 2
, P

 =
 1

0,
 C

 =
 4

)

!1.0

!0.5

0.0

0.5
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5 10 15

Partial Derivatives. The derivatives computed by D() are
partial derivatives. That is, they are derivatives where the
variable on the right-hand side of ~ is changed and all
other variables are held constant.
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Second Derivatives.A second derivative is merely the
derivative of a derivative. You can use the D() operator
twice to Þnd a second derivative, like this.

df = D( sin ( x) ÷ x )
ddf = D( df ( x) ÷ x )

To save typing, particularly when there is more than
one variable involved in the expression, you can put mul-
tiple variables to the right of the ~ sign, as in this second
derivative with respect to x:

another.ddf = D( sin ( x) ÷ x & x )

This form for second and higher-order derivatives also
delivers more accurate computations.
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Exercises

Exercise 1
Using D() , Þnd the derivative of

3* x^2 - 2 * x + 4 ~ x .

(a) What is the value of the derivative at
x = 0? -6 -4 -3 -2 0 2 3 4 6

(b) What does a graph of the derivative func-
tion look like?

A A negative sloping line
B A positive sloping line
C An upward-facing parabola
D A downward-facing parabola

Exercise 2
Using D() , Þnd the derivative of

5* exp(.2 * x) ~ x .

(a) What is the value of the derivative at
x = 0?
-5 -2 -1 0 1 2 5 .

(b) Plot out both the original exponential ex-
pression and its derivative. How are they
related to each other?

A They are the same function
B Same exponential shape, but

different initial values
C The derivative has a faster

exponential increase
D The derivative shows an expo-

nential decay

Exercise 3
Use D() to Þnd the derivative of e$ x2

with respect to x (that is, exp(-(x^2) ~ x ).
Graph the derivative from x = $ 2 to 2. What
does the graph look like?

A A bell-shaped mountain
B Exponential growth
C A positive wave followed by a

negative wave
D A negative wave followed by a

positive wave

Exercise 4 What will be the value of this
derivative?

D( fred ^2 ÷ ginger )

A 0 everywhere
B 1 everywhere
C A positive sloping line
D A negative sloping line
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Exercise 5
Use D() to Þnd the 3rd derivative of

cos(2 * t) . If you do this by using the ~t&t&t

notation, you will be able to read off a for-
mula for the 3rd derivative. What is it?

A sin(t)
B sin(2t)
C 4 sin(2t)
D 8 sin(2t)
E 16 sin(2t)

WhatÕs the4th derivative?
A cos(t)
B cos(2t)
C 4 cos(2t)
D 8 cos(2t)
E 16 cos(2t)

Exercise 6
Compute and graph the 4th derivative of

cos(2 * t^2)~t from t = 0 to 5. What does the
graph look like?

A A constant
B A cosine whose period de-

creases ast gets bigger
C A cosine whose amplitude

increases and whose period
decreases ast gets bigger

D A cosine whose amplitude
decreases and whose period
increases ast gets bigger

For cos(2 * t^2)~t the fourth derivate is a
complicated-looking expression made up of

simpler expressions. What functions appear
in the complicated expression?

A sin and cos functions
B sos, squaring, multiplication

and addition
C cos, sin, squaring, multiplica-

tion and addition
D log, cos, sin, squaring, multipli-

cation and addition

Exercise 7
Consider the expression x* sin(y) involv-

ing variables x and y. Use D() to compute
several derivative functions: the partial with
respect to x, the partial with respect to y, the
second partial derivative with respect to x,
the second partial derivative with respect to
y, and these two mixed partials:

pxy = D( x* sin ( y) ÷ x&y)

pyx = D( x* sin ( y) ÷ y&x)

Pick several (x, y) pairs and evaluate
each of the derivative functions at them. Use
the results to answer the following:

¥ The partials with respect to x and to y are
identical. True or False

¥ The second partials with respect to x and
to y are identical. True or False

¥ The two mixed partials are identical. That
is, it doesnÕt matter whether you differen-
tiate Þrst with respect to x and then y, or
vice versa. True or False



6. Integrals & Anti-Differentiation

YouÕve already seen theD operator, which takes the deriva-
tive of functions:

f = function( x) { x^2 }

f ( 1)

[1] 1

f ( 2)

[1] 4

f ( 3)

[1] 9

df = D( f ( x) ÷ x )

df ( 1)

[1] 2

df ( 2)

[1] 4

df ( 3)

[1] 6

The antiD() operator, as the name suggests, ÒundoesÓ
the operation of differentiation, like this:

g = antiD ( df ( x) ÷ x )

g( 1)

[1] 1

g( 2)

[1] 4

g( 3)

[1] 9

Notice that the function g was created by anti-differentiating
not f but d f / dx. The result is a function thatÕs Òjust likeÓ
f . (Why the quotes on Òjust likeÓ? YouÕll see.) You can
see that the values of g are the same as the values of the
original f .

You can also go the other way: anti-differentiating a
function and then taking the derivative to get back to the
original function.
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h = antiD ( f ( x) ÷ x )
dh = D( h( x) ÷ x )

f ( 1)

[1] 1

dh( 1)

[1] 1

f ( 2)

[1] 4

dh( 2)

[1] 4

f ( 3)

[1] 9

dh( 3)

[1] 9

As you can see,antiD() undoes D() , and D() undoes
antiD() . Almost. The next paragraphs are about the Òal-
most.Ó

ItÕs rarely the case that you will want to anti-differentiate
a function that you have just differentiated. One undoes
the other, so there is little point except to illustrate how
differentiation and anti-differentiation are related to one
another. But it often happens that you are working with
a function that describes the derivative of some unknown
function, and you wish to Þnd the unknown function.

This is often called ÒintegratingÓ a function. ÒIntegra-
tionÓ is a shorter and nicer term than Òanti-differentiation,Ó
and is the more commonly used term. The function thatÕs
produced by the process is generally called an Òintegral.Ó
The terms ÒindeÞnite integralÓ and ÒdeÞnite integralÓ are
often used to distinguish between the function produced
by anti-differentiation and the valueof that function when
evaluated at speciÞc inputs. This will be confusing at
Þrst, but youÕll soon get a feeling for whatÕs going on.

As you know, a derivative tells you a local property
of a function: how the function changes when one of the
inputs is changed by a small amount. The derivative is a
sort of slope. If youÕve ever stood on a hill, you know that
you can tell the local slope without being able to see the
whole hill; just feel whatÕs under your feet.

An anti-derivative undoes a derivative, but what does
it mean to ÒundoÓ a local property? The answer is that
an anti-derivative (or, in other words, an integral) tells
you about some global or distributed properties of a
function: not just the value at a point, but the value over a
whole range of points. This global or distributed property
of the anti-derivative is what makes anti-derivatives a bit
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more complicated than derivatives, but not much more
so.

The core of the problem is that there is more than one
way to ÒundoÓ a derivative. Consider the following func-
tions, each of which is different:

f1 = makeFun( sin ( x^2) ÷ x)
f2 = makeFun( sin ( x^2) + 3 ÷ x)
f3 = makeFun( sin ( x^2) - 100 ÷ x)

f1 ( x=1)

[1] 0.8415

f2 ( x=1)

[1] 3.841

f3 ( x=1)

[1] -99.16

Despite the fact that the functions f1, f2, and f3, are differ-
ent, they all have the same derivative.

df1 = D( f1 ( x) ÷ x )
df2 = D( f2 ( x) ÷ x )
df3 = D( f3 ( x) ÷ x )

df1 ( x=1)

[1] 1.081

df2 ( x=1)

[1] 1.081

df3 ( x=1)

[1] 1.081

This raises a problem. When you ÒundoÓ the deriva-
tive of any of df1 , df2 , or df3 , what should the answer
be? Should you get f1 or f2 or f3 or some other function?

Despite this ambiguity, we tend to talk about theanti-
derivative, as if it were a unique function rather than a
whole set of functions differing by an additive constant.
This ambiguity is tolerable because of the way the anti-
derivative is typically used: to Þnd an integral.

An integral accumulates values over an interval, called
the interval of integration . To specify this interval, you
need to give two numbers: the location of the lower bound
of the interval and the location of the upper bound. When
you specify both bounds, the integral is called a deÞnite
integral .

The traditional notation for a deÞnite integral shows
both the upper and lower bounds, as in

* to

from
x2dx =

1
3

x3
+
+
+
+

to

f rom
.
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When you use the anti-derivative to Þnd a deÞnite inte-
gral, you will actually use the anti-derivative twice: once
at the bottom and once at the top of the interval of inte-
gration. For instance,

* 2

$ 1
x2dx =

1
3

x3
+
+
+
+

2

$ 1
=

1
3

23 $
1
3

($ 1)3 =
9
3

= 3

To calculate this deÞnite integral in computer notation,
you Þrst Þnd the anti-derivative and then evaluate it at
the two bounds.

F = antiD ( x^2 ÷ x )
F( x=2) - F( x=- 1)

[1] 3

When you take the difference, any additive constant
involved in the deÞnition of F will cancel out. So you
can think of the deÞnite integral as a function of the two
bounds of integration rather than of the variable of inte-
gration.

If you like, you can also think about the anti-derivative
as being a function of two inputs: ( 1) the variable of inte-
gration, (2) the additive constant. Because anti-differentiation
and integration are so closely related, traditionally the
same notation is used. For instance,

*
x2dx =

1
3

x3.

This looks like a function of x alone. But thatÕs not the
whole truth. In fact, the statement could be written

*
x2dx =

1
3

x3 + C,

for any constant C. So, really, the value of
,

x2dx is a
function both of x and C. In traditional notation, the C
argument is often left out and the reader is expected to
remember that

,
x2dx is an indeÞnite integral .

For now, these are the essential things to remember:

1. The antiD() function will compute an anti-derivative.
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2. Like the derivative, the anti-derivative is always taken
with respect to a variable, for instance antiD( x^2 ~ x ) .
That variable, here x, is called (sensibly enough) the
Òvariable of integration.Ó You can also say, Òthe inte-
gral with respect to x.Ó

3. The anti-derivative is a function of the variable of inte-
gration.

4. To Þnd a deÞnite integral, that is, the integral of a
function f (x) over an interval of integration, you eval-
uate the anti-derivative of f at two places Ñ the top
and the bottom of the interval of integration Ñ and
take the difference.

The many vocabulary terms used reßect the different
ways you might specify or not specify particular numeri-
cal values for the lower and upper bounds of the interval
of integration: Òintegral,Ó Òanti-derivative,Ó ÒindeÞnite
integral,Ó and ÒdeÞnite integral.Ó Admittedly, this can be
confusing, but thatÕs a consequence of something impor-
tant: the integral is about the ÒglobalÓ or ÒdistributedÓ
properties of a function, the Òwhole.Ó In contrast, deriva-
tives are about the ÒlocalÓ properties: the Òpart.Ó The
whole is generally more complicated than the part.
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Exercises

Exercise 1
Find the numerical value of each of the

following deÞnite integrals.

1.
, 5

2 x1.5dx

0.58 6.32 20.10 27.29 53.60 107.9 1486.8

2.
, 10

0 sin(x2)dx

0.58 6.32 20.10 27.29 53.60 107.9 1486.8

3.
, 4

1 e2xdx

0.58 6.32 20.10 27.29 53.60 107.9 1486.8

4.
, 2

$ 2 e2xdx

0.58 6.32 20.10 27.29 53.60 107.9 1486.8

5.
, 2

$ 2 e2|x|dx

0.58 6.32 20.10 27.29 53.60 107.9 1486.8

Exercise 2
ThereÕs a very simple relationship be-

tween
, b

a f (x)dx and
, a

b f (x)dx Ñ integrat-
ing the same function f , but reversing the
values of from and to . Create some func-
tions, integrate them, and experiment with
them to Þnd the relationship.

A They are the same value.
B One is twice the value of the

other.
C One is negative the other.
D One is the square of the other.

Exercise 3
The function being integrated can have

additional variables or parameters beyond
the variable of integration. To evaluate the
deÞnite integral, you need to specify values
for those additional variables.

For example, a very important function
in statistics and physics is the Gaussian,
which has a bell-shaped graph:

gauss = makeFun( ( 1/ sqrt ( 2* pi * sigma ^2))

* exp ( -( x- mean) ^2/( 2* sigma ^2)) ÷ x,

mean=2, sigma =1.5 )

plotFun ( gauss ( x)÷x,

x.lim =range (- 10, 10))
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(You might want to cut-and-paste this deÞni-
tion of f into your R session.) As you can see,
itÕs a function ofx, but also of the parameters
mean and sigma .

When you integrate this, you need to tell
antiD() what the parameters are going to be
called:

G = antiD ( gauss ( x, mean=m, sigma =s) ÷
x )

args ( G)

function (x, m, s, initVal = 0)

NULL

Evaluate each of the following deÞnite
integrals:

1.
, 1

0 gauss(x, m = 0,s = 1)dx
0.13 0.34 0.48 0.50 0.75 1.00

2.
, 2

0 gauss(x, m = 0,s = 1)dx
0.13 0.34 0.48 0.50 0.75 1.00

3.
, 2

0 gauss(x, m = 0,s = 2)dx
0.13 0.34 0.48 0.50 0.75 1.00

4.
, 3

$ ! gauss(x, m = 3,s = 10)dx. (Hint: The
mathematical $ ! is represented as-Inf

on the computer.)
0.13 0.34 0.48 0.50 0.75 1.00

5.
, !

$ ! gauss(x, m = 3,s = 10)dx
0.13 0.34 0.48 0.50 0.75 1.00
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7. Dynamics

A basic strategy in calculus is to divide a challenging
problem into easier bits, and then put together the bits
to Þnd the overall solution. Thus, areas are reduced to
integrating heights. Volumes come from integrating areas.

Differential equations provide an important and com-
pelling setting for illustrating the calculus strategy, while
also providing insight into modeling approaches and a
better understanding of real-world phenomena. A dif-
ferential equation relates the instantaneous ÒstateÓ of a
system to the instantaneous change of state. ÒSolvingÓ
a differential equation amounts to Þnding the value of
the state as a function of independent variables. In an
Òordinary differential equations,Ó there is only one in-
dependent variable, typically called time. In a Òpartial
differential equation,Ó there are two or more dependent
variables, for example, time and space.

The integrateODE() function solves an ordinary dif-
ferential equation starting at a given initial condition of
the state.

To illustrate, here is the differential equation corre-
sponding to logistic growth:

dx
dt

= rx(1 $ x/ K).

There is a statex. The equation describes how the change
in state over time, dx/ dt is a function of the state. The
typical application of the logistic equation is to limited
population growth; for x < K the population grows while
for x > K the population decays. The state x = K is a
Òstable equilibrium." ItÕs an equilbrium because, when
x = K, the change of state is nil: dx/ dt = 0. ItÕs stable, be-
cause a slight change in state will incur growth or decay
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that brings the system back to the equilibrium. The state
x = 0 is an unstable equilibrium.

The algebraic solution to this equation is a staple of
calculus books. It is

x(t) =
Kx(0)

x(0) + ( K $ x(0)e$ rt )
.

The solution gives the state as a function of time, x(t),
whereas the differential equation gives the change in state
as a function of the state itself. The initial value of the
state (the "initial condition") is x(0), that is, x at time zero.

The logistic equation is much beloved because of this
algebraic solution. Equations that are very closely related
in their phenomenology, do not have analytic solutions.

The integrateODE() function takes the differential
equation as an input, together with the initial value of
the state. Numerical values for all parameters must be
speciÞed, as they would in any case to draw a graph of
the solution. In addition, must specify the range of time
for which you want the function x(t). For example, hereÕs
the solution for time running from 0 to 20.

soln <- integrateODE ( dx ÷ r * x* ( 1- x/ K),
x=1, K=10, r =.5 ,
tdur =list ( from =0, to =20))

The object that is created by integrateODE() is a func-
tion of time. Or, rather, it is a set of solutions, one for
each of the state variables. In the logistic equation, there
is only one state variable x. Finding the value of x at time
t means evaluating the function at some value of t. Here
are the values at t = 0, 1, . . . , 5.

soln $x( 0: 5)

[1] 1.000 1.548 2.320 3.324 4.509 5.751

Often, you will plot out the solution against time:

plotFun ( soln $x( t )÷t , t.lim =range ( 0, 20))
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Differential equation systems with more than one state
variable can be handled as well. To illustrate, here is the
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SIR model of the spread of epidemics, in which the state
is the number of susceptibles S and the number of infec-
tives I in the population. Susceptibles become infective
by meeting an infective, infectives recover and leave the
system. There is one equation for the change in S and a
corresponding equation for the change in I . The initial
I = 1, corresponding to the start of the epidemic.

epi = integrateODE ( dS÷- a* S* I , dI ÷a* S* I - b* I ,
a=0.0026 , b=.5 , S=762 , I =1, tdur =20)

This system of differential equations is solved to pro-
duce two functions, S(t) and I (t).

plotFun ( epi $S( t )÷t , t.lim =range ( 0, 20))
plotFun ( epi $I ( t )÷t , add=TRUE, col ="red" )
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In the solution, you can see the epidemic grow to a
peak near t = 5. At this point, the number of susceptibles
has fallen so sharply that the number of infectives starts
to fall as well. In the end, almost every susceptible has
been infected.

Example : Another Dive from the Board Consider
a diver as she jumps off the high board and plunges into
the water. In particular, suppose you want to understand
the forces at work. To do so, you construct a dynamical
model with state variables v and x.

dive = integrateODE ( dv÷- 9.8 , dx÷v,
v=1, x=5, tdur =1.2 )

plotFun ( dive $x( t )÷t , t.lim =range ( 0, 1.2 ),
ylab ="Height (m)" )
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WhatÕs nice about the differential equation format is
that itÕs easy to add features like the buoyancy of water
and drag of the water. WeÕll do that here by changing the
acceleration (the dv term) so that when x < 0 the acceler-
ation is slightly positive with a drag term proportional to
v2 in the direction opposed to the motion.

diveFloat = integrateODE ( dv÷ifelse ( x>0, - 9.8 ,
1- sign ( v) * v^2), dx÷v,
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v=1, x=5, tdur =10)
plotFun ( diveFloat $x( t )÷t , t.lim =range ( 0, 10),
ylab ="Height (m)" )
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According to the model, the diver resurfaces after
slightly more than 5 seconds, and then bobs in the wa-
ter.

Exercises

IN DRAFT

Exercise 1 An equation for exponential
growth. WhatÕs the value at time t = 10?

Exercise 2 An equation for logistic growth.
WhatÕs the value at timet = 10?

Exercise 3 A phase plane problem.

Exercise 4 Linear phase plane. Ask about
different parameters. Is the system stable or
unstable; oscillatory or not?

Exercise 5 Or maybe move to an activity.
The diving model. Vary the parameters until
the maximum depth is some speciÞed value.



Activities

Activity 1: Where is the landscape the steepest?

YouÕre going to create a terrain that you can examine vi-
sually. Your goal is to calculate where the terrain is steep-
est.

1. Create a function representing the height H of a terrain
and plot it out in contour form. By changing the seed ,
you can create your own terrain.

H = rfun (÷x&y, seed =677 )
plotFun ( H( x=x, y=y)÷x&y,

x.lim =range (- 5, 5), y.lim =range (- 5, 5))
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82. The partial derivatives reßect the slope of the terrain in
the cardinal directions along the axes. You can calcu-
late each of the partials " H/ " x and " H/ " y. For exam-
ple

dHdx = D( H( x=x, y=y)÷x)

3. Plot out " H/ " x as a function of x and y.

plotFun ( dHdx( x=x, y=y)÷x&y,
x.lim =range (- 5, 5), y.lim =range (- 5, 5))
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4. ÒSteepnessÓ can be either uphill or downhill, depend-
ing on the direction you are heading. To measure
steepness, as opposed to slope, you might sensibly
take the absolute value of the slope or the square of the
slope. Plot out the absolute value |" H/ " x| as a func-
tion of x and y. (Hint: the abs() function.) Plot out
also the square: (" H/ " x)2
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5. The above plots reßect the steepness only in thex di-
rection. To get overall steepness, add up the steepness
in the x and in the y directions. You can do this as ei-
ther |" H/ " x| + |" H/ " y| or as

!
(" H/ " x)2 + ( " H/ " y)2.

6. Looking at your plot of overall steepness, Þnd the
steepest point in the original terrain, that is, the x and
y at which the terrain is steepest.

For discussion:

¥ Why the square-root in the expression for steepness?
(Hint: Think about the units.)

¥ Which do you think is more appropriate for measuring
steepness: the sum of absolute values of slopes or the
square-root of the sum of square slopes?

¥ Is it hard to Þnd the x and y at which the function are
steepest? How does the smoothness of the terrain com-
pare to the smoothness of the steepness function?

Question for a computer programming class: Given a
terrain function and initial location x0 and y0 as inputs,
Þnd the path followed by a drop of water as it rolls down
the landscape.

Activity 2: How far does the car get?

Suppose you want to calculate the capacity of a road in-
tersection regulated by a trafÞc light. One part of this cal-
culation involves the distance that a car can travel, start-
ing from a standstill, in a given amount of time.

Much of the information you have about the car is in
the form of velocity. ItÕs common sense that the velocity is
0 mph at the start and you can reasonably presume that
the car accelerates to the speed limit of the road, say30
mph. By doing a little observation, you can get an esti-
mate for how many seconds it takes a typical car to reach
the speed limit. For the present, letÕs say that itÕs6 sec-
onds.

¥ Construct a function (of time t) that models the ve-
locity of the car and is consistent with the informa-
tion speciÞed above. Implement this as a computer
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function and graph it to verify that the velocity proÞle
meets the speciÞcation. Here are several possible forms
(with parameters that might be inappropriate).

v1 = makeFun( pmin ( 30, 30* t / 6) ÷ t )
v2 = makeFun( 30* pnorm ( t , mean=3, sd =1)÷t )
v3 = makeFun( ifelse ( t >6, 30, 30* t / 6) ÷ t )

¥ Compute the integral of the velocity function to get
position. Plot out the position as a function of time.
(Question: What should the from argument be? The to
argument?)

¥ Does the result Ñ how far the car goes Ñ depend
strongly on the details of the velocity function? Is there
a strong reason to prefer one form of the function to
the others? Make a quantitative argument either way.

Activity 3: Allocating resources for health care

The data Þle "jmm2012data1.csv" contains expertsÕ eval-
uation of the number of Quality-Adjusted Life Years
(QALYs) that will result from investment in two differ-
ent health care options, A and B.

You can read in the Þle like this:

dat = fetchData ( "jmm2012data1.csv" )

The data are discrete. You can construct a continuous,
smooth function of QALYs versus expenditure for each of
A and B like this:

fA = spliner ( A÷expend , data =dat , monotonic =TRUE)
fB = spliner ( B÷expend , data =dat , monotonic =TRUE)

You can now use fA() and fB() like any other func-
tion, for example, plotting

plotFun ( fA ( xA)÷xA, xA.lim =range ( 0, 50))
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The problem. You have a total budget of 50 units to
spend between A and B.



activities 77

(a) WhatÕs the best allocation of the funding between A
and B to maximize the QALY output?

(b) If your budget were increased slightly, what would
be the resulting change in optimal QALY output?
Put this in the form of a fraction: budget units per
increased QALY.

(c) Suppose that you were mandated to spend at least 40
units of the budget on A. How would that additional
constraint change the resulting optimal QALY output?

Activity 4

Here is an AP Calculus exam problem published by the
College Board.

If the function f is deÞned by f (x) =
#

x3 + 2, and g
is an antiderivative of f such that g(3) = 5, then g(1) = ?

(A) $ 3.268

(B) $ 1.585

(C) 1.732

(D) 6.585

(E) 11.585

You can use the antiD() operator to compute the an-
tiderivative.

g = antiD ( sqrt ( x^2+2) ÷ x)

The antiderivative is usually treated as an expression
that involves some unknown additive constant C. One
way to answer the question is to Þnd the value of C con-
sistent with g(3) = 5, then apply this in calculating g(1).

Activity 5: Interactive Curve Fitting

To continue your explorations in nonlinear curve Þtting,
you are going to use a special purpose function that does
much of the work for you while allowing you to try out
various values of k by moving a slider. HereÕs how:
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inc = fetchData ( "Income-Housing.csv" )
inc $tens = inc $Income / 10000
mFitExp ( TwoVehicles ÷ tens , data =inc )

After executing these commands, you should see a
graph with the data points, and a continuous function
drawn in red. There will also be a control box with a few
check-boxes and a slider, as in Figure8.

Figure 8: mFitExp() is a graph-
ical applet that lets you adjust
the nonlinear parameter k in an
exponential function.

The check-boxes indicate which functions you want
to take a linear combination of. You should check ÒCon-
stantÓ and Òexp(kx)Ó, as in the Þgure. Then you can use
the slider to vary k in order to make the function approx-
imate the data as best you can. At the top of the graph is
the RMS error Ñ which here corresponds to the square
root of the sum of square residuals. Making the RMS er-
ror as small as possible will give you the best k.

You may wonder, what was the point of the line that
said

inc $tens = inc $Income / 10000

This is just a concession to the imprecision of the
slider. The slider works over a pretty small range of pos-
sible k, so this line constructs a new income variable with
units of tens of thousands of dollars, rather than the orig-
inal dollars. The instructions will tell you when you need
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to do such things.



Instructor Notes

This document is for instructors: people who are already
very familiar with the mathematical concepts of calculus
but who are new to R or perhaps generally to the use of
computer software in teaching calculus.

Realize at the outset that computer notation you will
be using is somewhat different from traditional mathe-
matical notation:

¥ Operators are often written differently. Examples: x^2
or sqrt(x) or A* sin(2 * pi * t/5) . Students will make
many mistakes at Þrst, for example writing 2 t in-
stead of 2* t , or leaving out parentheses to contain ar-
guments (e.g., writing sin x rather than sin(x) ).

¥ You give names to results so that you can use them in
new places.

¥ Variable names are often multi-letter, latin, and use
words rather than diacritical marks. Example: instead
of öx or p0, write perhaps xestim or popInitial .

¥ An explicit functional style is used where the operator
name is followed by a pair of parentheses. Within the
parentheses, the various arguments are separated by
commas, and often identiÞed by name with a notation
like x=3 .

This last point marks an important difference between
the computer notation and traditional notation, since in
traditional position rather than a label is used to iden-
tify different inputs. For instance, in traditional notation

you can write
, b

a f (x)dx. In this notation, the operator is
integration, a and b are arguments that mark the lower
and upper bounds of integration, and depending on your
philosophy, either f (x) is the quantity being integrated
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(with dx denoting that x is the variable of integration), or
f (x)dx is the input to the integration operation. Similarly,
in d f

dx, the operation is differentiation, f is the function be-
ing differentiated, and the variable with respect to which
the derivative is taken is identiÞed by the dx as x.

In many calculus operations there is both a mathe-
matical function and one or more variables with respect
to which an operation is being performed. In English we
often will say Òwith respect to,Ó or Òas a function ofÓ or
ÒversusÓ. To mimic this in R, we have adopted a built-in
R-language capability called a formula. The central com-
ponent of a formula is the ~ symbol: Òtilde.Ó

To illustrate, here is the construction of a derivative:

D( sin ( x^2) ÷ x )

function (x)
cos(x^2) * (2 * x)

The computer has performed the derivative, produc-
ing a function of x.

Typically, you would perform this operation in order
to use the resulting function for some purpose, so you
should give the output a name:

fp = D( sin ( x^2) ÷ x )

To evaluate the function at a particular value of x, use
the parentheses to pass along tofp the desired value for
x:

fp ( x=2 )

[1] -2.615

Or, perhaps you want to plot out the function for
some range of x values:

plotFun ( fp ( x) ÷ x, x.lim =range ( 0, 4) )
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You might reasonably conclude that turns an expres-
sion into a function. ThatÕs not quite right. The provides
a place to identify one or more symbolic variables with
respect to which the operation Ñ differentiation, plotting,
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etc. Ñ is to take place. The symbol is a way to organize
symbolic information, not an instruction to perform a
particular calculus operation.

You must always specify explicitly the operation you
want to perform. If, for example, you want to create a
function, you can do so with the makeFun operator:

f = makeFun( sin ( x^2) ÷ x )

Notice that the operation has been named f , not f (x)
or some such thing. When you want to use the function,
you must give it an argument. If the argument is numer-
ical, just go ahead and put the numerical value in paren-
theses:

f ( x=3)

[1] 0.4121

If the argument is a symbol, and youÕre planning to
use that symbol as the variable in some calculus opera-
tion, then you will want to use the marker as well, for
example:

plotFun ( f ( x) ÷ x, x.lim =range ( 0, 4) )

or

F = antiD ( f ( x) ÷ x )

Multiple Variables

In modeling-based calculus, itÕs appropriate to introduce
functions of multiple variables very early. The notation is
designed to make this straightforward. For example:

plotFun ( exp (- t / 10) * sin ( 2* pi * x/ 5) ÷ x&t ,
x.lim =range ( 0, 5), t.lim =range ( 0, 10) )
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When you create a function of multiple variables,
thereÕs a question of how to identify which variable is
which. One traditional approach is to use a notation
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that conveys both the name of the function and the ar-
guments, e.g., f (x, t) = e$ t/10 sin 2!

5 x.
In the computer notation, the name is just f . The ar-

guments are conveyed in the deÞnition.

f = makeFun( exp (- t / 10) * sin ( 2* pi * x/ 5) ÷ x&t )

Perhaps it seems obvious from the deÞnition that the
Þrst argument will be x and the second t. That happens
to be true here, but itÕs not something to rely on. ItÕs bet-
ter to identify the arguments explicitly, e.g.

f ( x=1, t =2 )

[1] 0.7787

f ( t =2, x=1 )

[1] 0.7787

When you are using a function in a symbolic context,
this can lead to a notation that looks, at Þrst glance, to be
redundant:

plotFun ( f ( t =t , x=2)÷t , t.lim =range ( 0, 10))
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or, for example, to integrate with respect to x but leave
things as a function of symbolic t:

F = antiD ( f ( t =t , x=x)÷x )

Symbolic Parameters

You can use symbols as parameters. ThemakeFun() , D() ,
antiD() , and plotFun() operators will recognize them
and keep them in symbolic form. For instance:

D( A* exp (- k* t ) ÷ t )

function (t, A, k)
-(A * (exp(-k * t) * k))
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However, when you want to evaluate such a func-
tion, including plotting it, you need to assign a numerical
value to the parameter.

gp = D( A* exp (- k* t ) ÷ t )
plotFun ( gp( t , A=2, k=1/ 10) ÷ t , t.lim =range ( 0, 20))
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The Basic Calculus Operations

Differentiation and Partial Differentiation

D( a* x^2 + b* x + c ÷ x )

function (x, a, b, c)
a * (2 * x) + b

D( a* x^2 + b* x + c ÷ x&x )

function (x, a, b, c)
a * 2

D( a* x + b* y + c* x* y ÷ x&y )

function (x, y, a, b, c)
c

Anti-Differentiation/IndeÞnite Integration

F = antiD ( exp ( x) * x^2 ÷ x)

Evaluating an Anti-Derivative/DeÞnite Integration

The anti-derivative function produced by antiD() has the
same arguments as the input expression.

To compute an integral, evaluate the anti-derivative
at the top and bottom of the interval of integration and
subtract:



instructor notes 85

F( x=2) - F( x=1)

[1] 12.06

When integrating to ± ! , use the values -Inf or Inf .
For some expressions,antiD() will compute the anti-

derivative in symbolic form; the function returned will
have familiar R notation. For all other input expressions,
the output of antiD() is still a function, but it will not
have an algebraic form. Instead, the function will com-
pute an integral numerically.

Notice that the numerical function is an integral. This
means that it can only be evaluated with both upper
and lower bounds speciÞed. The output of antiD() is
arranged so that only the upper bound appears in the
argument list. When a numerical approach is taken, the
lower bound will be set to a default value. You can set the
lower bound explicitly, if you wish, for instance:

newF = antiD ( exp ( x) * x^2 ÷ x, x.from =1)
F( x=2) #default lower bound is 0

[1] 12.78

newF( x=2) #lower bound was set to 1

[1] 12.06

You need be concerned with the lower bound only
if the default of zero is inappropriate. This can occur if
there is a singularity in the expression being anti-differentiated
at or near zero.

You can use symbolic parameters in deÞning an anti-
derivative, but they must be given numerical values at the
time of evaluating it.

Fbell = antiD ( dnorm ( x, m=m, s=s) ÷ x ) # symbolic s
and m
Fbell ( x=12, s=2, m=10) - Fbell ( x=8, s=2, m=10)

[1] 0.6827


