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Abstract

The properties of various CrxNy �lms grown by direct current (DC) reactive sputtering process with di� erent
values of nitrogen partial pressures (0, 2Ö10-4, 3.5Ö10-4 and 5Ö10-4 mbar) were studied. The structural anal-
ysis of the samples was performed by using X-ray di� raction and transmission electron microscopy (TEM),
while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying
nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was
produced. TEM analysis showed that at pN2 = 2Ö10-4 mbar the layer has dense microstructure. On the other
hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The
optical properties of CrxNy �lms were evaluated from spectroscopic ellipsometry data by the Drude or com-
bined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coe� cient are
strongly dependent on the dominant phase formation (Cr, Cr2N, CrN) during the deposition process. Finally,
the electrical studies indicated the metallic character ofCr2N phase and semiconducting behaviour of CrN.
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I. Introduction

Transition metal nitrides exhibit highly covalent
bonds in simple, usually cubic structures, which give
them an extreme hardness, high corrosion and oxi-
dation resistance and excellent mechanical and high-
temperature stability [1–4]. Due to their excellent tri-
bological characteristics, they have become important
materials for cutting tools and wear applications, as
di� usion barriers in microelectronics, and as corrosion
and abrasion-resistant coatings on optical and mechan-
ical components [5]. TiN and CrN are the most exten-
sively investigated hard coatings. Besides its good me-
chanical properties TiN is not always corrosion resis-
tant due to the presence of micro defects in the layers,
while dense microstructure of CrN provide high wear
and corrosion resistance [6]. Much research is being
conducted to study growth and properties of CrN �lm
deposited by CVD and PVD methods [7]. Nevertheless
PVD methods, such as unbalanced magnetron sputter-
ing, metal vapour vacuum arc, RF reactive sputtering,
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pulsed DC magnetron sputtering, arc discharge etc., are
quite common for the deposition of CrN �lms, whereas
CVD methods are not as popular.

In physical vapour deposition chromium-nitride �lms
can grow in form of cubic CrN or hexagonal Cr2N
phases, with Cr2N phase exhibiting a higher hardness.
On the other hand, the CrN phase is also interesting
due to its magnetic, optical and electronic properties,
in the recent studies being reported as a semiconductor
material [8,9]. For sputtered thin �lms, process parame-
ters such as gas partial pressure, bias voltage, tempera-
ture, and growth rate strongly in�uence the �lm prop-
erties. By controlling the partial pressure of nitrogen
during reactive sputtering it is possible to produce �lms
ranging in composition from the pure Cr through Cr2N-
CrN mixtures to pure CrN as the amount of nitrogen
is increased [10]. The composition and growth param-
eters in�uence the microstructure, optical and electrical
properties of the resulting materials. Although the mi-
crostructural features of CrN and Cr2N have been stud-
ied previously [10–12] low attention was given to their
optical properties and electronic structure and their cor-
relation to the process parameters during the deposition.
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M. Novaković et al./ Processing and Application of Ceramics 11 [1] (2017) 45–51

In this work the microstructure, optical and electri-
cal properties of various CrxNy coatings were studied.
We investigate the e� ect of the nitrogen partial pres-
sure on the phase formation (Cr, Cr2N, CrN) and, sub-
sequently, on the properties of the produced coatings.
Chemical composition of the layers was identi�ed by
Rutherford backscattering spectrometry (RBS), while
X-ray di� raction (XRD) and transmission electron mi-
croscopy (TEM) were used for the structural character-
ization and the phase identi�cation. The optical prop-
erties were determined by spectroscopic ellipsometry
(SE), SE data being analysed with the Bruggeman Ef-
fective Medium Theory (BEMT) [13]. We showed that
spectroscopic ellipsometry can be used as an alternative
technique for phase identi�cation of single-phases (Cr,
Cr2N and CrN) and their volume fractions in the lay-
ers. Using the Drude and combined Drude-Tauc Lorentz
model [13–15], we de�ned the optical constants (refrac-
tive indexn and extinction coe� cient k) of the layers.
We found that both optical and electrical properties of
CrxNy layers are strongly determined by the growing
phase.

II. Experimental

CrxNy �lms used in the present experiments were
deposited by means of DC reactive ion sputtering in
a Balzers Sputtron II system. The layers were grown
on commercial Si(100) wafers. The substrates were
cleaned by standard HF etching and dip in deionized
water before being mounted into the deposition cham-
ber. Then, they were ion etched for 2 minutes in Ar
atmosphere at a pressure of 1Ö10-3 mbar and a nega-
tive bias voltage of 1 kV applied to the substrate holder.
The base pressure prior to sputtering was approximately
5Ö10-6 mbar. Sputter deposition was performed using
a Cr target (99.9%) in a mixed Ar (99.999%) and N2
(99.999%) discharge. During deposition, the argon par-
tial pressure was initially set to 1Ö10-3 mbar and the re-
active gas, i.e. N2, was subsequently added to obtain
the desired gas composition. The nitrogen partial pres-
sure was set either to 2Ö10-4, 3.5Ö10-4, or 5Ö10-4 mbar.
The layers were grown at room temperature (RT), at a
rate of� 10 nm/min, to a total thickness of 240–280nm.
The pure Cr �lm (pN2

= 0 mbar), with the thickness of
� 220 nm was also deposited. The thicknesses of the de-
posited structures were measured with a pro�lometer
and con�rmed by TEM.

For RBS (Rutherford backscattering spectrometry)
analysis we used a 900 keV He2+ ion beam, generated
by the IONAS facility in Göttingen [16]. We collected
random RBS spectra at normal incidence to the sam-
ple surface with two detectors, positioned at 165° scat-
tering angle in ibm geometry. The experimental spectra
were �tted by using the Data Furnace code [17]. Trans-
mission electron microscopy was done on a Philips EM
400T microscope operated at 120 keV, the samples be-
ing prepared for cross-sectional analysis by standard

technique of ion beam thinning. Bright-�eld contrast
imaging was done, and we also used micro-di� raction
(MD) analysis to study the crystalline structure of the
samples. XRD measurements were carried out at normal
and grazing incidence on a standard Bruker D8 Di� rac-
tometer with parallel beam optics using Cu K� di� rac-
tion patterns. Angle 2� was scanned in the range from
30° to 70° with step of 0.02°, in time sequence of 10 s.

SE data were obtained using HORIBA-Jobin
Yvon variable angle spectroscopic ellipsometer (model
UVISEL 5) equipped with DeltaPsi 2 data analysis soft-
ware [18]. The ellipsometer consisted of a light source,
a monochromator, a photoelastic modulator, collimating
optics, polarizing elements, a sample holder, and a de-
tector. Simultaneously, the system acquired a spectrum
ranging from 0.6 to 4.8 eV with 0.1 eV intervals. Ac-
quisition time per each point was 200 ms. SE measure-
ments were taken using 1 mm spot size and at an angle
of incidence of 70°. We also measured sheet resistance
of the samples with a four point probe, the values being
calculated in speci�c resistivity to compare the results.

III. Results and discussion

3.1. Composition and microstructure

In general, elemental composition measurements car-
ried out by RBS on chromium-nitride samples revealed
homogeneous Cr and N concentrations over the whole
depth of the layers, which was shown in our previous pa-
per [19]. For illustration, the Cr concentration pro�les
in CrxNy layers, as deduced by means of the WiNDF
code from the experimental RBS spectra were presented
in Fig. 1. The layers have di� erent thickness, but we
can see uniform Cr depth pro�les. The presented spec-
tra clearly show that the nitrogen partial pressure deter-
mines the composition of the deposited layers, which
is manifested in the decrease of the Cr concentration
with the increase of the N2 partial pressure. More pre-
cise insight into the layers composition can be revealed

Figure 1. Cr depth pro�les in Cr xNy �lms deposited at
di� erent nitrogen partial pressures (0, 2Ö10-4,

3.5Ö10-4 and 5Ö10-4 mbar)
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Table 1. Chromium nitride thin �lm compositions obtained
from RBS analyses (the �lms were deposited under the

di� erent values of nitrogen partial pressure,pN
2
)

Sample S-1 S-2 S-3 S-4
pN2

[mbar] 0 2Ö10-4 3.5Ö10-4 5Ö10-4

Cr [at.%] 100 73 61 51
N [at.%] 0 27 39 49

by observing the extracted Cr/N ratios for the deposited
layers, presented in Table 1. Sample S-1 corresponds to
the pure Cr coating, having 100 at.% of chromium, since
it was deposited with no �ow of nitrogen in the cham-
ber. The extracted Cr/N ratios for the lower nitrogen par-
tial pressures of 2Ö10-4 mbar and 3.5Ö10-4 mbar, clearly
showed that the metal-to-nitrogen ratio is� 73/27 and
� 61/39, respectively, hinting the formation of nonstoi-
chiometric Cr2N phase. The sample S-4 deposited at the
highest nitrogen pressure (5Ö10-4 mbar) lead to near sto-
ichiometric composition of Cr/N, with the mean atomic
composition of Cr51N49. This is an indication that under
these conditions the pure CrN phase is formed.

Figure 2 shows XRD spectra taken from the sam-
ples S-2 and S-3, deposited at nitrogen partial pres-
sure of 2Ö10-4 and 3.5Ö10-4 mbar, respectively. These
data indicate that di� erent phases are present in the
layers. At low nitrogen partial pressure of 2Ö10-4 mbar
the �lm S-2 contains a mixture of Cr, Cr2N and CrN
phases. When the nitrogen partial pressure is increased
to 3.5Ö10-4 mbar (the sample S-3) again the mixture of
Cr + Cr2N + CrN was formed, with larger amount of
Cr2N phase, which is visible through the appearance of
new peaks at around 68°. In both spectra the peaks are
overlapped due to their large width, indicating very �ne-
grained structure of the layers. Figure 3 shows XRD
spectrum corresponding to the sample S-4 deposited at
5Ö10-4 mbar of nitrogen. Well de�ned di� raction pat-
tern of the pure fcc CrN phase was obtained, with
strong (111) preferred orientation and weaker peaks

Figure 2. XRD spectra of CrxNy layers deposited at nitrogen
partial pressure of: 2Ö10-4 mbar (S-2, black line)

and 3.5Ö10-4 mbar (S-3, grey line)

Figure 3. XRD pattern of CrN coating deposited at nitrogen
partial pressure of 5Ö10-4 mbar

along (200) and (220) planes, in accordance with mini-
mization of the overall energy of the �lm. This result is
in good agreement with Luet al.[20] who found that the
deposited CrN �lms exhibit a (111) texture. The XRD
re�ections of CrN �lm are shifted to lower angular val-
ues than expected, which is typical for in-plane com-
pressed d-metal nitrides [13,14]. The deduced lattice pa-
rameter of 0.4183 nm found to be in the range of the
values characteristic for polycrystalline CrN �lms:a0 =
0.4133–0.4185nm [3,21]. The average grain size of the
CrN �lms, estimated from the FWHM of the XRD lines
using the Scherrer's formula, was found to be 14� 2 nm.

Figure 4 shows typical cross-section TEM images
of CrxNy thin �lms deposited under di� erent nitrogen
partial pressures. One sees that nitrogen pressure dur-
ing deposition have signi�cant in�uence on the mi-
crostructure of the layers. Bright-�eld image of the S-
2 layer deposited at the lowest nitrogen partial pressure
of 2Ö10-4 mbar exhibit a dense morphology, as shown
in Fig. 4a. With increasingpN2

to 3.5Ö10-4 mbar (Fig.
4b) the microstructure is less compact with an indica-
tion of columnar growth. Di� raction rings on the cor-
responding MD patterns for both low-nitrogen-pressure
layers are blurred and reveal no obvious phases. This
is the consequence of two e� ects: i) the presence of
more than one phase and ii) the formation of very small
crystalline grains. This is supported by interpretation of
corresponding XRD spectra, which showed �ne-grained
mixture of Cr, Cr2N and CrN phases. When the nitrogen
partial pressure was increased to 5Ö10-4 mbar (Fig. 4c)
a pronounced columnar structure of the layer is obvi-
ous. Columnar growth is present throughout the whole
�lm thickness, with the columns width of few tens of
nanometers. The corresponding MD pattern reveals ob-
vious CrN phase. The �rst three rings belong to (111),
(200) and (220) CrN phase, while the outer rings cor-
respond to higher indexed planes of this phase. The
changes in the morphology of the growing �lm dur-
ing deposition were investigated by Honeset al. [22]
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Figure 4. TEM images and corresponding MD patterns of CrxNy thin �lms as a function of nitrogen partial pressure:
a) 2Ö10-4 mbar, b) 3.5Ö10-4 mbar and c) 5Ö10-4 mbar

on di� erent nitride thin �lms deposited by RF reactive
magnetron sputtering. They revealed that a signi�cant
fraction of the Cr+ ions exhibits a high �ux and kinetic
energy if the nitrogen partial pressurepN2

is low. These
high-energy ions e� ectively bombard the growing �lm
and a densely packed morphology results. In contrast,
in an absence of a signi�cant amount of high-energy
ions at higherpN2

, the authors observed columnar crys-
tal morphology.

3.2. Optical analyses

Optical properties of CrxNy �lms were studied by SE
(spectroscopic ellipsometry), which is non-destructive,
surface-sensitive technique determining the complex di-
electric function" (! ) of the materials. Figure 5 shows
the real (" r) and the imaginary (" i) parts of dielectric
functions obtained from CrxNy �lms deposited under
di� erent values of nitrogen partial pressure.

The dielectric functions of CrxNy �lms were anal-
ysed through appropriate modelling, using the following
points:

ˆ One-layer model was used for each sample since
these layers are optically thick.

ˆ The pure Cr layer was modelled with Cr, while
the other layers were modelled as a mixture of Cr,
Cr2N and CrN phases, by using the Bruggeman ef-
fective approximation. In BEMT any complex ma-
terial is considered to consist of randomly mixed
regions of pure constituent materials (Cr, Cr2N,
CrN); then, the dielectric function of complex ma-
terial can be described by the dielectric functions
of the constituent materials and the corresponding
volume fractions.

ˆ The dielectric function for the pure Cr layer was
modelled using the Drude oscillator model, which
is commonly used for metal systems and well de-
scribes metallic character due to the intraband tran-
sitions of free conduction electrons. The analysis
of other samples was made by Drude term and
Tauc-Lorentz oscillator (DTL model) described
in literature [23], where Tauc-Lorentz model de-
scribes the interband transitions due to valence

Figure 5. Real (" 1) and imaginary (" 2) part of the dielectric
function of Cr xNy thin �lms deposited at di � erent nitrogen
partial pressures (continuous lines correspond to the �ts

obtained by models described in the text)

electrons. A special feature of materials with con-
duction electrons is the plasma frequency! p,
which is correlated with the conduction electron
density. Therefore,! p can be used to determine the
metallic or semiconducting character of the CrxNy
�lms. Another important parameter is the damp-
ing factor� D. This parameter is proportional to the
collision frequency which can be related to the col-
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lision processes between the free charge carriers
and defects and hence give us information about
the crystalline order in the system.

The �tting results of di� erent CrxNy �lms, obtained
by using above mentioned modelling, are shown in Fig.
5. The volume fractions of di� erent phases obtained by
BEMT analysis are listed in Table 2. The four presented
layers exhibit di� erent composition, crystal structure
and optical properties and correspond to Cr (pN2

=
0 mbar), mixed Cr+ Cr2N + CrN (pN2

= 2Ö10-4 and
3.5Ö10-4 mbar) and CrN (pN2

= 5Ö10-4 mbar). Accord-
ing to the raw spectra, the pure Cr have" r < 0, indi-
cating metallic character of the layer. Similar behaviour
was observed for samples S-2 and S-3 deposited at ni-
trogen pressure of 2Ö10-4 and 3.5Ö10-4 mbar, respec-
tively. On the other hand, the layer S-4 deposited at
5Ö10-4 mbar of nitrogen shows quite di� erent behaviour
having" r > 0. The results of the BEMT analysis show
the variation of the constituent phases (Cr, Cr2N and
CrN) with the increase of nitrogen partial pressure. We
identify three distinct regions where di� erent phases
dominate. ForpN2

= 0 there is no nitrogen incorpora-
tion in the layer and the pure Cr phase is formed. In the
range of 2Ö10-4 mbar� pN2

� 3.5Ö10-4 mbar primarily
formed phase is Cr2N, with di� erent content of Cr and

Table 2. The volume fractions (f i) of the constituent phases
(Cr, Cr 2N, CrN) in various Cr xNy layers grown at di� erent

values of nitrogen partial pressure

Sample S-1 S-2 S-3 S-4
pN2

[mbar] 0 2 3.5 5
fCr [%] 100 21� 1 1� 1 -

fCr2N [%] - 69 � 1 86� 1 -
fCrN [%] - 10 � 1 13� 1 100

Figure 6. The calculated refractive index (n) and extinction
coe� cient (k) for Cr xNy thin �lms deposited at partial

pressure of nitrogen of 2Ö10-4, 3.5Ö10-4 and 5Ö10-4 mbar
compared to the correspondingn, k curves for

the pure CrN and Cr2N [24]

CrN. ForpN2
= 2Ö10-4 mbar the �lm consists of 70% of

Cr2N, 20% of Cr and 10% of CrN. When the nitrogen
partial pressure is increased up topN2

= 3.5Ö10-4 mbar,
Cr2N becomes predominant phase in the layer with the
volume fraction of 86%. Finally, forpN2

= 5Ö10-4 mbar
a pure CrN is formed. These results are in a good agree-
ment with RBS and XRD �ndings.

Based on the results for the best-�t DTL parameters
we calculated the refractive indexn and extinction co-
e� cient k in the energy region of 0.6–4.8 eV. Figure 6
shows the calculatedn andk of the layer deposited at
pN2

= 5Ö10-4 mbar (the pure CrN) and the layers de-
posited atpN2

= 2Ö10-4 and 3.5Ö10-4 mbar, containing
predominantly Cr2N phase. The solid and dashed lines
represent then, k values for the pure Cr2N and CrN, re-
spectively, reported by Aouadiet al. [24]. One can see
that optical constants of our CrN layer quite well match
with the one from the literature. Slightly smaller abso-
lute values of refraction index in the whole energy range
means that it is optically less dense as compared to the
referent layer. As for the layers deposited at lower ni-
trogen partial pressures corresponding n and k versus
photon energy shows di� erent slopes, where the values
for pN2

= 3.5Ö10-4 mbar is in a good agreement with
the literature values [24]. If one knows that these layers
have di� erent content of Cr2N phase, namely 70% and
86% for pN2

= 2Ö10-4 mbar andpN2
= 3.5Ö10-4 mbar,

respectively, it is concluded that even small change in
the layer's composition in�uences its optical constants.
Thus, establishing of an optical database for the Cr–N
system enables us to easily identify di� erent chromium-
nitride phases (Cr2N, CrN) and control their purity by
monitoring the optical properties (based on SE data) of
the layers.

The results of the DTL model �ts can also determine
the evolution of the transport properties of CrxNy's con-
duction electrons. Figure 7 shows the! p and� D values
calculated from the Drude term of the DTL model. The
discrimination of the various phases is obvious in the
evolution of! p and� D. In all cases� D exhibits higher
values with N incorporation as compared to the initial
Cr layer. This parameter is closely related to the elec-
trical resistivity and is in�uenced by the existence of
grain boundaries and defects in the layers. Hence, the
increase of� D is attributed to the lower free electron
mobility due to the structural di� erences in the layers.
Indeed, there are some di� erences between our layers,
not only compositional but also structural. As shown by
TEM analysis (Fig. 4), by increasing the nitrogen par-
tial pressure the average energy per atom of the grow-
ing �lm converts the compact stacking of the �lm (pN2

= 2Ö10-4 mbar) over the less dense structure (pN2
=

3.5Ö10-4 mbar) to the more porous, columnar structure
(pN2

= 5Ö10-4 mbar). Patsalaset al. [25] found that the
� D parameter is directly related to the content of voids
in the layer and that� D has the lowest value when the
dense, compact structure is obtained, which is attributed
to the elimination of voids.
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Figure 7. The evolution of! p and � D calculated from the
Drude term of the Drude and Drude-Tauc Lorentz model

for di � erent CrxNy layers

Figure 7 also shows an overall decrease of! p with
increasing nitrogen content in the layers. Changes of! p
could be directly related to the contribution of di� erent
phases and their metallic character. According to the re-
sults, Cr layer has pure metallic behaviour with the con-
siderable density of conduction electrons (! p = 24 eV).
In addition, with increasing nitrogen partial pressure to
2Ö10-4 mbar ! p becomes lower and stays almost con-
stant with further increase ofpN2

to 3.5Ö10-4 mbar. This
is due to the incorporation of N into the layer, which is
manifested in the formation of Cr2N phase, with some
contribution of Cr and CrN phases. For the nitrogen par-
tial pressure of 5Ö10-4 mbar the layer exhibits no con-
duction electrons and consequently! p = 0. This is an
indication of semiconducting character of CrN, since at
this pN2

value a stoichiometric CrN phase is formed.

3.3. Electrical resistivity

The transport properties of CrxNy's conduction elec-
trons are better illustrated by the electrical resistivity
measurements, based on the four point probe method.
Figure 8 shows variation of resistivity of the CrxNy �lms
deposited under di� erent nitrogen partial pressures. The
resistivity of the pure Cr thin �lm corresponding to
pN2

= 0 mbar found to be about 58µWcm, is in agree-
ment with the value already reported by Högberget al.
[26]. When the nitrogen partial pressure is increased to
2Ö10-4 mbar (the sample S-2) the resistivity becomes
more than two times higher than that of the Cr layer,
reaching a value of 120µWcm and stays almost constant
when the nitrogen partial pressure is increased further
up to 3.5Ö10-4 mbar (the sample S-3). The increasing
trend of the electrical resistivity is due to the increase
of N concentration in the layers which has as a conse-
quence the increase of impurity defects or it may also
be attributed to a decrease of the carrier density due to
the nitrization of Cr. Based on the optical measurements

Figure 8. Variation of resistivity of Cr xNy layers as a
function of nitrogen partial pressure during deposition

(Table 2), combined by the XRD results (Fig. 2) the
presence of di� erent phases (Cr, Cr2N and CrN) is es-
tablished in the layers, with the primarily formed Cr2N
phase. Hence, electrical resistivity is higher as com-
pared to the initial Cr �lm, but still metallic character
is present in the layers [27]. By further increasing the
nitrogen partial pressure to 5Ö10-4 mbar very high value
of resistivity of 1353µWcm is obtained. This clearly
proves semiconducting character of CrN as only CrN
phase grown under given nitrogen partial pressure. Sim-
ilar �ndings were also reported by Subramanianet al.
[28], who examined the in�uence of nitrogen �ow rates
on the properties of magnetron sputtered CrNx �lms.

IV. Conclusions

The microstructure, optical and electrical properties
of various CrxNy �lms grown by DC reactive sputter-
ing were studied. The layers were deposited at sev-
eral values of nitrogen partial pressure ranging from 0
to 5Ö10-4 mbar. RBS and XRD were employed for the
compositional analysis and phase identi�cation. It was
revealed that at di� erent values of nitrogen partial pres-
sure di� erent phases are obtained: Cr (pN2

= 0), mixed
Cr + Cr2N + CrN (pN2

= 2Ö10-4 and 3.5Ö10-4 mbar)
or pure CrN (pN2

= 5Ö10-4 mbar). TEM has shown
the changes in the morphology of the growing �lm:
from compact and dense structure observed atpN2

=
2Ö10-4 mbar to the well de�ned columnar structure for
the highest nitrogen pressure. SE analysis was em-
ployed for the optical characterization of the samples.
The results showed that there are well-de�nedpN2

re-
gions, where speci�c phases dominate (Cr, Cr2N, CrN)
and the optical constantsn andk are directly determined
by the presence of the growing phase. The layers with
predominantly formed Cr2N phase exhibit metallic be-
haviour, while CrN is a semiconductor.
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