Structural, dielectric and conductivity studies of LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$ synthesized by solid state reaction method

Kotamalige Anand1, Bhajanthri Ramamurthy1, Valaparla Veeraiah2, Kannipamula Vijaya Babu3,*

1Department of Instrumentation and USIC, Sri Krishna Devaraya University, Anantapur, India
2Department of Physics, Andhra University, Visakhapatnam, India
3Advanced Analytical Laboratory, Andhra University, Visakhapatnam, India

Received 2 February 2016; Received in revised form 22 March 2016; Accepted 28 March 2016

Abstract

The olivine structured LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1) cathode materials were synthesized by solid state reaction method. The XRD, FTIR and FESEM studies were conducted to investigate the phase purity, crystal structure, lattice parameters and morphology, respectively. The powder X-ray diffraction studies confirmed the single phase formation of the pure and doped compounds which are found to be orthorhombic with the parent LiNiPO$_4$. Morphology and grain sizes of the materials were investigated through FESEM. The FTIR technique was used to characterize the stretching and bending vibrational modes of different functional groups existing in the materials. The cathode properties were analysed through impedance spectroscopy and indicated on improved electrical properties of the doped samples as compared to the pure LiNiPO$_4$. The conductivity and modulus analyses of the samples were carried out at different temperatures and frequencies using the complex impedance spectroscopy technique.

Keywords: lithium nickel phosphate, cathode materials, XRD, FTIR, modulus analysis

I. Introduction

In recent years, lithium-ion batteries are the most promising power systems due to their high energy densities, long life cycle, environmental friendliness and safety. The olivine structured LiMPO$_4$ ($M = Fe, Co, Mn$ and Ni) materials are examined as an attractive cathode materials due to their higher theoretical capacity and/or energy density than that of other commercial cathodes [1–7]. Among the four types LiMPO$_4$, LiNiPO$_4$ is expected to have the highest operating voltage (5.1 V), high energy density as well as the smallest volume change. However, the major drawback of the slow kinetics of the electronic and lithium ion transport for LiNiPO$_4$ cathodes restricts the development of LiNiPO$_4$. The performance of LiNiPO$_4$ can be improved by different synthesis methods, such as metal doping on the lattice and carbon coating on the particle surface [8,9]. However, the main approach is doping of metal ions on either Li$^+$ or Ni$^{2+}$ lattice site which have been remarkably used by several researchers to improve the electronic conductivity of olivine type materials [10–14]. The electronic conductivity of LiNiPO$_4$ is found to increase with substitution of nickel ions with 10 at.% of Cu$^{2+}$ and Mg$^{2+}$. So, it is of interest to study the effect of Mg$^{2+}$ and Cu$^{3+}$ doping on the electrical properties of LiNiPO$_4$. Hence, this paper aims to investigate the effect of Mg$^{2+}$ and Cu$^{3+}$ ion contents on the electrical properties of LiNiPO$_4$ and to study the different parameters at different temperatures by impedance spectroscopy.

II. Preparation and experimental techniques

The cathode compositions were synthesized by a solid-state reaction method from stoichiometric amounts of Li$_2$CO$_3$ (Merck 99.9%), NiO (Merck 99.9%), MgO (Merck 99.9%), CuO (Merck 99.9%) and (NH$_4$)$_2$PO$_4$ (Merck 99.9%). The solid state reaction synthesis involved three steps. In the first, the precursors, as raw materials, were well mixed and thoroughly
Table 1. Lattice parameters, space group and cell volume for different compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>a [Å]</th>
<th>b [Å]</th>
<th>c [Å]</th>
<th>Space group</th>
<th>Cell volume [Å³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNi0.75Mg0.25PO4</td>
<td>10.0341</td>
<td>5.8762</td>
<td>4.6669</td>
<td>Pnma</td>
<td>275.1785</td>
</tr>
<tr>
<td>LiNi0.75Mg0.20Cu0.05PO4</td>
<td>10.0131</td>
<td>5.8794</td>
<td>4.6667</td>
<td>Pnma</td>
<td>274.7377</td>
</tr>
<tr>
<td>LiNi0.75Mg0.15Cu0.10PO4</td>
<td>9.9688</td>
<td>5.8745</td>
<td>4.6613</td>
<td>Pnma</td>
<td>272.98</td>
</tr>
</tbody>
</table>

Figure 1. XRD patterns for LiNi0.75Mg0.25-xCuxPO4 (x = 0, 0.05 and 0.1)

Figure 2. SEM images of prepared powders

X-ray diffraction

X-ray diffraction patterns of the prepared LiNi0.75Mg0.25-xCu0.05PO4 (x = 0, 0.05 and 0.1) powders are shown in Fig. 1. The crystal phase of all the compounds are identified to be LiNiPO4 phase with ordered olivine structure indexed by orthorhombic symmetry with Pnma space group. It can be seen from the patterns that all diffraction peaks are very sharp, which indicated that the samples have good crystal structure. There is no other phase except the orthorhombic LiNiPO4, which means that entire copper ions entered the lattice of orthorhombic LiNi0.75Mg0.25PO4. The main peaks for these prepared samples were labelled with hkl indexes (Fig. 1) [15–18]. It has been observed that the obtained 2θ values are in good agreement with JCPDS file number 88-1297.

The average crystallite size was calculated by the Debye-Scherrer method and found to be 67, 71 and 60 nm for LiNi0.75Mg0.25-xCu0.05PO4 having x = 0, 0.05 and 0.1, respectively. The lattice parameters of all these samples have been calculated and summarized in Table 1.
seen that the lattice parameter along b-axis increases in LiNiPO$_4$ as the position of Ni$^{2+}$ in the lattice is partially replaced by Mg$^{2+}$/Cu$^{2+}$, which is favourable to the transmission of lithium-ions for the lithium-ion transmitting along b-axis. The reason is that the ionic radius of Ni$^{2+}$(0.83 Å) is smaller than that of Cu$^{2+}$(0.87 Å) and it caused the increase of length of b-axis. The volume of the unit cell for Cu doped LiNi$_{0.75}$Mg$_{0.25}$PO$_4$ is larger than that of LiNiPO$_4$ which may be useful for lithium to insert and de-insert process [19–21].

FESEM with EDS

The microstructure of LiNi$_{0.75}$Mg$_{0.25}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1) powders calcined at 800 °C is shown in Figure 2. The image clearly shows agglomeration of submicron size particles. The samples with Cu$^{2+}$ and Mg$^{2+}$ show different surface morphologies; LiNi$_{0.75}$Mg$_{0.25}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1) consists of less agglomerated elongated particles. However, LiNi$_{0.75}$Mg$_{0.25}$PO$_4$ particles are hardly agglomerated and are not in regular shape [22–24].

EDS is used for the quantitative chemical analysis of the material, but it is unable to detect the elements with atomic number less than four. EDS spectra of LiNi$_{0.75}$Mg$_{0.25}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1), presented in Fig. 3, show peaks corresponding to Ni, Mg, Cu, P and O elements present in the material and no other impurity is observed. It was not possible to detect Li due to the obvious reason that the X-ray fluorescence yield is extremely low for the elements H, He, Li and Be.

FTIR

The orthophosphates show main bands at 1060–1000 cm$^{-1}$ and 580–520 cm$^{-1}$. Structure of phospho-olivine consists of LiO$_6$ and MO$_6$ octahedra linked to PO$_4^{3−}$ polyanions. In LiNiPO$_4$ compounds, oxygen is bonded to three octahedral cations i.e., two M$^{2+}$ and one Li$^+$ ion. Splitting of ν$_3$ components of PO$_4^{3−}$ group, observed in phospho-olivine is due to type of bonding between oxygen and M octahedral cation. Although, the spectra are dominated by vibrational features due to phosphate ions, transition-metal ions also register their presence in the middle region around 400–700 cm$^{-1}$. The bands in the region of 700–850 cm$^{-1}$ are due to phosphate groups such as P$_2$O$_4^{4−}$ or extended pyrophosphate structures [25,26]. The bands near 750 cm$^{-1}$ indicate the presence of bridging P–O–P groups due to the impurity phase of pyrophosphates as shown in Fig. 4. The vibrational spectra data and band assignments of all the compounds are listed in Table 2.

Impedance spectroscopy

Impedance measurements are frequently used to characterize the electrical properties of materials and it

<table>
<thead>
<tr>
<th>Table 2. Vibrational spectra data and band assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No</td>
</tr>
<tr>
<td>x = 0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>ν (Li–O)</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>ν (Ni–O)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>ν$_2$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>ν$_2$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>ν$_4$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>ν$_1$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>ν$_3$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>ν$_3$ (PO$_4^{3−}$)</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>ν$_3$ (PO$_4^{3−}$)</td>
</tr>
</tbody>
</table>
has proven to be a powerful tool particularly for depicting the electrical conductivity of ionic, electronic and mixed ceramic materials. The frequency-dependent conductivity and dielectric permittivity studies provide important information on the ion transport and relaxation studies of fast ionic conductors. Thus, the complex impedance spectroscopic technique was used to analyse the electrical response of the polycrystalline samples in a wide range of frequencies. AC electrical data may be represented in any of the four basic formalisms which are interrelated to each other.

The measured impedance data can be represented in different forms, using the inter relations as follows:

\[Z' = Z' - jZ'' \] complex impedance
\[M' = M' + jM'' = j \omega C_0 Z' \] complex modulus
\[\varepsilon' = \varepsilon' - j \varepsilon'' \] complex permittivity

where \(j = \sqrt{-1} \), \(C_0 \) is the vacuum capacitance and \(\omega = 2\pi f \) is the angular frequency. \((Z', M', \varepsilon')\) and \((Z'', M'', \varepsilon'')\) are the real and imaginary components of impedance, modulus and permittivity \([27-29]\).

Figure 5 shows typical impedance diagrams of \(\text{LiNi}_{0.75} \text{Mg}_{0.25} \text{PO}_4 \) \((x = 0, 0.05 \text{ and } 0.1)\) at different temperatures. The impedance spectrum comprises of an internal resistance of the material at high frequencies, a depressed semicircle at the middle frequencies, characteristic of a charge transfer process at interfaces or boundaries and a slope at low frequencies representing the diffusion process for the charge transport. The nature of the plots with the change in temperatures ensures a distinct effect on the characteristic impedance spectrum of the material by the appearance of single semicircular arc arising due to the bulk properties of the material. These semicircular arcs appear in distinct frequency ranges. This feature is almost similar at different temperatures, also with a difference in radii of curvature of the arcs, which reduces with rise in temperature. Nyquist plots show two semicircles indicating bulk and grain boundary contribution to the impedance behaviour for all temperatures. The semicircular pattern in the impedance spectrum is a representative of the electrical processes taking place in the material which can be expressed as an equivalent electrical circuit comprising of a parallel combination of resistive and capacitive elements. The presence of a semicircular arc (i.e. the high frequency semicircle) arises due to the contribution of bulk properties of the material. The electrical processes taking place within the material has been modelled for a polycrystalline system. This provides convincing evidence that the electrical properties of \(\text{LiNi}_{0.75} \text{Mg}_{0.25} \text{Cu}_x \text{PO}_4 \) are dependent on microstructural as well as temperature \([30-33]\).

The variations of real \((Z')\) and imaginary \((Z'')\) part of impedance with frequency at different temperatures of \(\text{LiNi}_{0.75} \text{Mg}_{0.25} \text{Cu}_x \text{PO}_4 \) \((x = 0, 0.05 \text{ and } 0.1)\) are shown in Figs. 6 and 7. The \(Z'\) and \(Z''\) values decreased sharply with increase in frequency and display characteristic dispersion at lower temperatures. In addition, the \(Z'\) and \(Z''\) values also decreased with the increase of
Cu2+ content. These observations indicate that there is a spread of relaxation time and the existence of a temperature dependent electrical relaxation phenomenon in the material [34,35].

AC Conductivity studies

The AC conductivity is calculated from dielectric data using the relation:

$$\sigma_{AC} = \omega \cdot \varepsilon_r \cdot \varepsilon_0 \cdot \tan \sigma$$

where $\omega = 2\pi f$. The variation of AC electrical conductivity of LiNi\textsubscript{0.75}Mg\textsubscript{0.25}PO\textsubscript{4} (x = 0, 0.05 and 0.1) as a function of frequency at different temperatures is shown in Fig. 8. The conductivity spectrum displays characteristic conductivity dispersion throughout the frequency range below 150 °C, i.e. a low frequency independent plateau is observed, whereas in the higher frequency region dispersion of conductivity is still retained. The crossover from the frequency independent region to the frequency dependent regions shows the onset of the conductivity relaxation, indicating the transition from long range hopping to the short range ionic motion. The frequency of onset of conductivity relaxation shifts with temperature to higher frequency side.

The highest conductivity was observed in the sample without copper (LiNi\textsubscript{0.75}Mg\textsubscript{0.25}PO\textsubscript{4}), whereas in the copper substituted samples higher conductivity has the sample with $x = 0.1$ (LiNi\textsubscript{0.75}Mg\textsubscript{0.15}Cu\textsubscript{0.1}PO\textsubscript{4}). The decrease in conductivity is most probably due to the “antisite” defect, where a small population of Li+ and Ni2+ ions exchange their sites caused by the substitution of Ni2+ with a divalent ion [36,37]. The conductivity and activation energy values are listed in Table 3. It is shown that the conductivities of LiNi\textsubscript{0.75}Mg\textsubscript{0.25}PO\textsubscript{4}, LiNi\textsubscript{0.75}Mg\textsubscript{0.20}Cu\textsubscript{0.05}PO\textsubscript{4} and LiNi\textsubscript{0.75}Mg\textsubscript{0.15}Cu\textsubscript{0.1}PO\textsubscript{4} at the room temperature are 2.95×10-9, 2.83×10-9 and 2.86×10-9 S/cm, respectively, indicating that an increase of Cu doping concentration could definitely enhance the electronic conductivity and promote the Li storage performance.

Activation energy

The standard Arrhenius plots (log σ versus $1/T$) for all the prepared compounds are presented in Fig. 9 in accordance to the following equation:

$$\sigma = \sigma_0 \exp \left(- \frac{E_a}{k_B T} \right)$$

where E_a is the activation energy. These results show an increase of the conductivity with increasing temperature for all compounds indicating a characteristic activated behaviour over the complete temperature range studied. Furthermore, plots of log σ vs. $1/T$ are found to be linear in the range of temperatures above 350 K. The estimated values of E_a are 0.6522 eV, 0.7057 eV and 0.7645 eV for $x = 0$, 0.05 and 0.1 at 100 kHz, respectively. The type of temperature dependence of AC conductivity indicates that the electrical conduction in the material is a thermally activated process. It is well known that the motion of oxygen vacancies gives rise
Table 3. Activation energies for different compounds at 100 kHz

<table>
<thead>
<tr>
<th>Compound</th>
<th>AC conductivity at RT [S/cm]</th>
<th>Activation energy [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNi${0.75}$Mg${0.25}$PO$_4$</td>
<td>2.95×10$^{-9}$</td>
<td>0.6522</td>
</tr>
<tr>
<td>LiNi${0.75}$Mg${0.20}$Cu$_{0.05}$PO$_4$</td>
<td>2.83×10$^{-9}$</td>
<td>0.7057</td>
</tr>
<tr>
<td>LiNi${0.75}$Mg${0.15}$Cu$_{0.10}$PO$_4$</td>
<td>2.86×10$^{-9}$</td>
<td>0.7645</td>
</tr>
</tbody>
</table>

Dielectric constant (ε')

Figure 10 shows the frequency dependence of dielectric constant (ε') at different temperature for the LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1) cathode materials. It is clear from this figure that ε' decreases with frequency and increases with temperature. The decrease of dielectric constant (ε') with frequency can be attributed to the fact that at low frequencies all four types of polarization, deformingational (electronic and ionic) and relaxation (orientational and interfacial), are active and contribute to ε'. However, with the increase of frequencies the orientational polarization is less active in comparison to electronic and ionic polarization. This decreases the value of dielectric constant (ε') reaching a constant value at higher frequency [39,40].

The increase of dielectric constant (ε') with temperature can be attributed to the fact that the orientational polarization is related to the thermal motion of ions, so dipoles can be easily oriented at higher temperatures. Thus, when the temperature is increased the orientation of dipole is facilitated and this enables easier orientational polarization, which leads to increase of the dielectric constant (ε') with temperature. The degree of crystallinity also has influence on the dielectric constant.

Dielectric permittivity (ε'')

Figure 11 shows the variation of imaginary part of dielectric permittivity (ε'') with frequency for different compounds at different temperatures. Generally, for all samples ε'' decreases with frequency. The higher values of dielectric loss (ε'') at low frequency are due to the free charge motion within the materials. Dielectric loss increases in the lower frequency region in the samples with copper, reflecting the enhancement of mobility of charge carrier when Mg$^{2+}$ is substitute with Cu$^{2+}$. Similar types of observations have been reported in literature [41].

Dielectric tangent loss (tan δ)

Figure 12 shows the variation of tangent loss with frequency of LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$ ($x = 0, 0.05$ and 0.1) cathode materials at different temperatures. Dielectric tangent loss (tan δ) increases in the lower frequency region in the samples with copper, what is similar be-
haviour observed for dielectric loss (ε''). However, the
tangent loss spectra are characterized with a peak appearing at
the characteristic frequency for all samples, suggesting the presence of relaxing dipoles in the
samples. The strength and frequency of relaxation depend
on characteristic property of dipolar relaxation [42]. The
tangent loss peaks shift towards higher temperatures for
the defined sample composition. In addition, the tangent
loss peaks shift towards the higher frequency with the
increase in copper content (x value). It is believed that
with addition of copper there is an increase in the amor-
phous content in the materials. The small and mobile
diluents units speed up the segmental motion by increas-
ing the available free volume, thereby reducing the re-

Electric modulus

The electrical response of the cathode materials can
also be analysed using complex electric modulus. Com-
plex impedance plots are more effective for the elements
with the high resistance, but can also be useful for smallest capacitance elements. Using the complex electric modulus data the inhomogeneous nature of polycrys-
talline ceramics can be separated into bulk and grain boundary effects, which is sometime not clearly dis-
tinguished from complex impedance plots. One of the in-
teresting advantages of the electric modulus formalism
is that it suppresses the electrode effect. Figure 13 shows
the real part of electric modulus M' vs. log f spectra ob-
tained from 20 to 150 °C for the LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$
samples.

From these plots, it is observed that the shape of each
curve is non-Lorentzian type exhibiting a peak at the
relaxation frequency with a long tail extending in the
region of shorter relaxation time and a change in the
value of peak height and the position of peak frequency
were also observed for different doped materials [43].

IV. Conclusions

The paper investigates the structure and electrical
properties of olivine structured LiNi$_{0.75}$Mg$_{0.25-x}$Cu$_x$PO$_4$
($x = 0, 0.05$ and 0.1) cathode materials. The structural
study was performed by X-ray powder diffraction and
Fourier transforms infrared spectroscopy. The morphol-
ogy of the surface and the grain sizes are analysed by
scanning electron microscope. Impedance spectroscopy
was used to establish microstructure-electrical proper-
ties relationship in the material. The crystal phase of all
the compounds are identified to be LiNiPO$_4$ phase with
ordered olivine structure indexed by orthorhombic sym-
metry with Pnma space group. The AC conductivity, di-
electric constant and dielectric loss of the studied com-
position are investigated. Both the dielectric constant ε'
and dielectric loss ε'' increase with temperature and de-
crease with frequency through the studied ranges. The dielectric constant may be attributed to orientation and
space charge polarization respectively, whereas the tem-
temperature dependence of the dielectric loss is associated with the conduction loss.

References

25. A. Rouier, G.A. Nazri, C. Julian, “Vibrational spectroscopy and electrochemical properties of LiNi_{0.5}Co_{0.5}O_{2} cathode material for rechargeable lithium batteries”, Ionics, 3 (1997) 170–176.

30. O. Bohnke, J. Emery, J.L. Fourquet, “Anomalies in Li’ ion dynamics observed by impedance spectroscopy and Li’ NMR in the perovskite fast ion conductor (Li_{1/3}La_{2/3}O_{3})TiO_{3}”, Solid State Ionics, 158 (2003) 119–132.

31. O. Bohnke, J. Emery, J.L. Fourquet, “Anomalies in Li’ ion dynamics observed by impedance spectroscopy and Li’ NMR in the perovskite fast ion conductor (Li_{1/3}La_{2/3}O_{3})TiO_{3}”, Solid State Ionics, 158 (2003) 119–132.

