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Abstract

The Vogel-Fulcher-Tammann (VFT), Avramov and Milchev (AM) as well as Mauro, Yue, Ellison, Gupta and
Allan (MYEGA) functions of viscous flow are analysed when the compositionally independent high temper-
ature viscosity limit is introduced instead of the compositionally dependent parameter η∞. Two different ap-
proaches are adopted. In the first approach, it is assumed that each model should have its own (average) high-
temperature viscosity parameter η∞. In that case, η∞ is different for each of these three models. In the second
approach, it is assumed that the high-temperature viscosity is a truly universal value, independent of the model.
In this case, the parameter η∞ would be the same and would have the same value: log η∞ = −1.93 dPa·s for
all three models. 3D diagrams can successfully predict the difference in behaviour of viscous functions when
average or universal high temperature limit is applied in calculations. The values of the AM functions depend,
to a greater extent, on whether the average or the universal value for η∞ is used which is not the case with
the VFT model. Our tests and values of standard error of estimate (SEE) show that there are no general rules
whether the average or universal high temperature viscosity limit should be applied to get the best agreement
with the experimental functions.
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I. Introduction

Viscosity determines whether materials behave fluid-

like or have properties of rigid bodies. Viscosity of

glass-forming melts increases sharply when temper-

ature T decreases. There are a plethora of studies

analysing the temperature dependence of viscosity.

The most popular viscosity model with three parame-

ters is the Vogel-Fulcher-Tammann (VFT) equation [1–

3]:

log ηVFT (T, x) = log η∞V +
B(x)

T − T◦(x)
(1)

where T is temperature and x is composition i.e. “mo-

lar fraction”. The constant B(x) and the pre-exponential

factor η∞V , as well as a finite temperature T◦(x) at which

the viscous flow ceases, are three parameters that can be

determined by fitting.

Avramov and Milchev proposed [4–7] an alternative
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model (AM model) which is based on the temperature

dependence of average jump frequency. In this model,

the number of free parameters of the viscosity equation

is reduced by assuming that at the referential tempera-

ture Tr the viscosity is 1013 dPa·s [8]. Therefore, the AM

equation has the form:

log ηAM(T, x) = log η∞A + (13 − log η∞A)

(

Tr

T

)α

(2)

where fitting parameters are the pre-exponential fac-

tor η∞A, the “fragility” parameter α and the referen-

tial temperature Tr. Parameter α can be related to the

kinetic fragility parameter m by following expression

α = m/(13 log η∞A) [8,9]. According to Angel [10,11],

the fragility parameter m is the slope of the viscos-

ity curve near glass transition temperature Tg, that is

m = d(log η)/d(Tg/T )|T=Tg
.

Recently, Mauro, Yue, Ellison, Gupta and Allan [12]

presented a new model for the viscosity of glass form-

ing liquids (MYEGA model). This model starts from

the Adam-Gibbs equation [13], relating viscosity to
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the configurational entropy and the temperature de-

pendent constraint model of Gupta and Mauro [14].

When log ηTr
= 13 dPa·s, the MYEGA equation [12] for

viscous flow is transformed into the following equation:

log ηMYEGA(T, x) = log η∞M + (3)

+ (13 − log η∞M)
Tr

T
exp

[(

m

13 − log η∞M

− 1

)

(

Tr

T
− 1

)

]

The extrapolated infinite temperature viscosity in Eq. 3

is denoted as log η∞M.

There are several important studies concerning

pre-exponential parameter η∞ of viscosity equation.

Nemilov [15] derived the following equation F∞ =

∆G∗/Vη that relates to free energy of activation of vis-

cous flow ∆G∗, the instantaneous shear modulus F∞
and the volume Vη of kinetic units that overcame ac-

tivation barrier. In his analyses, the relationship η =

(NA · h/Vη) · exp(∆G∗/RT ) for viscosity has been used,

where NA is Avogadro’s number, h is Planck’s constant

and R is universal gas constant. He gave the proof that

independently of the chosen molecular model the pre-

exponential parameter η∞ in different viscosity equa-

tions is determined by the molecular or atomic vol-

ume of the particle Vη responsible for viscous flow, and

that the most common expression for η∞ is Eyring’s

η∞ = NA · h/Vη [15,16].

For the diversity of oxide systems (silicate, borate,

metaphosphate, germanate, lanthanum oxide glass etc.),

the value of Vη is in the range of 9–14 cm3/mole and

generally correlates with the volume of bridge oxygen

ion in the bridge of the –Si–O–Si– type.

Values of Vη for chalcogenide glasses are approxi-

mately twice as bigger and correspond to the volume of

chalcogen in the bridges like –As–S–As–, –As–Se–As–

etc. As a result, Nemilov [15,16] concludes that in in-

organic glasses, the value of η∞ is determined by the

volume of bridge atoms in the bridges like –Si–O–Si–

and –As–Se–As–. For oxide melts and glasses it holds

that η∞ ≈ const ≈ 10−2.5 Pa·s.

Sanditov et al. [17] started from the viscosity equa-

tion η = η◦ · exp(Eη/RT ), where Eη is the free energy

of activation of viscous flow and η◦ pre-exponential fac-

tor. The following relationships between the free acti-

vation energy, the heat Hη and the activation entropy of

viscous flow S η is fulfilled: Eη = Hη − T · S η. Taking

this into account, the viscosity equation could be rewrit-

ten as η = η◦ · exp(Hη/RT ), where the experimental

value of pre-exponential factor η◦ includes entropy η◦ =

η∞ · exp(−S η/RT ). The expression for η∞ is Eyring’s

η∞ = NA · h/Vn. The entropy of activation is equal to

zero when (T → ∞) and factor η◦ is equal to viscosity

of substance in gaseous state. Sanditov et al. [17] have

calculated the pre-exponential factor for germinate and

borate glass forming liquids with the use of Lagrange in-

terpolation formula. The pre-exponential factor weakly

depends on the nature of glass. Recently, Sanditov has

proposed a model of viscous flow of glass forming liq-

uids and glasses [18]. According to this model, local

low-activation deformation of the network of covalent

bonds is necessary condition for viscous flow. The dis-

placement of a bridging oxygen atom leads to the switch

of bond in silicate glasses. The pre-exponential factor

η◦ in the obtained equation for viscosity as a function of

temperature is η◦ = h/Vη, where Vη is the volume of a

particle surmounting a potential barrier.

The question is, whether parameters η∞ in Eqs. 1–3

are dependent on composition and should they have the

same values or not. The comparison with the other two

models has shown that the distribution of η∞M values

is the narrowest with MYEGA [12], which is in agree-

ment with the concept of universality of the η∞ param-

eter for the given class of materials [19–21]. With the

assumption of the universal high temperature limit of

viscosity, Angel [22] proposed that non-Arrhenius plot

is directly connected to m. Hecksher et al. [23] assumed

that parameters η∞ are equal for the VFT and the AM

equations. The authors fitted experimental data for 42

organic liquids and found that on average the VFT func-

tions fit better than the AM functions. Senkov et al. [24]

analysed the fragility behaviour of glass forming liq-

uids, assuming that the fragility index m is unique for

each material and does not depend on the model and

type of the fitting function. They state that parameters

η∞ for the VFT and AM models are different and that

these values depend on the type of liquid and can vary a

great deal. The existence of compositional dependence

of parameter η∞ that appears in the AM function was

determined by Avramov [8] on the basis of experimen-

tal data for silicates. Kozmidis-Petrovic analysed [25]

the VFT, AM and MYEGA functions, using the forego-

ing approach of compositional dependence for parame-

ter η∞. All equations for viscous flow are then expressed

using the parameters characteristic for the AM model

and compared directly. In doing so, it has been consid-

ered that parameters η∞ are different for diverse models

as stated by Avramov [9].

Zhang et al. [26] investigated the high temperature

viscosity limit by analysing viscosity curves for 946 sil-

icate liquids and 31 other liquids. They state that there is

no significant dependence of the high-temperature vis-

cosity limit on the composition x. The value for the

high-temperature viscosity limit was given based on the

MYEGA model. The average values that follow from

the VFT and AM models are also presented there.

The direct measurement of the high-temperature vis-

cosity limit η∞ is not possible. The value of η∞ could

be obtained by extrapolation of measured data of vis-

cosity or by some model particularly proposed for η∞.

Unfortunately, the existing models such as theories pro-

posed by Frenkel and Eyring [26] do not take into ac-

count the fragility as important characteristic of viscos-

ity of glass-forming liquids. The theories developed for

the AM and MYEGA functions from the very beginning

ignored the theoretical analysis of η∞. But these models
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A.F. Kozmidis-Petrović / Processing and Application of Ceramics 8 [2] (2014) 59–68

include fragility and together with VFT, give three most

popular equations for viscosity of glass-forming liquids.

For this reason, the knowledge of the value that should

be taken as η∞ is of great practical importance.

In this paper, we will analyse the relation between the

MYEGA, AM and VFT equations expressing them in

such a way that their values of the high-temperature vis-

cosity limit does not depend on chemical composition.

Here, two different approaches can be adopted:

1. It can be assumed that each model should have its

own high-temperature viscosity limit based on aver-

age value of η∞ obtained by Zheng et al. [26]. In that

case, log η∞ will be different for each of these three

models.

2. It can be assumed that high-temperature viscosity

limit (log η∞) is a truly universal value, independent

of the model. (In the same way universality, indepen-

dent of the model, was assumed for the fragility pa-

rameter m). In this case, the parameter η∞ would be

the same and would have the same value: log η∞ ≡

log η∞M = −1.93 dPa·s for all three models.

Zheng et al. [26] presented the root mean square

(RMS) error of the viscosity fit to 946 Corning compo-

sitions as a function of each composition, plotted from

the highest to the lowest error. The MYEGA model pro-

vides the best fit with the lowest RMS error for the

whole range of compositions, as compared to the VFT

and AM models. For this reason, we selected the value

log η∞ = −1.93 dPa·s, which is calculated on the ba-

sis of the MYEGA model and proposed as universal. It

should be noticed that the difference between the RMS

error of the viscosity for the MYEGA and VFT models

is subtle.

Our research goal is to find how the AM and VFT

functions change within the given temperature interval

in relation to whether they are calculated with an aver-

age or with a universal value of η∞. The question is to

what extent the difference in values with each of them

is significant. At the same time the aim is to determine

whether it is possible to say which function is the best,

i.e. which has the best correlation with the experimen-

tally obtained results.

II. Theoretical development

Our starting point is the fact that on the basis of the

MYEGA model, the high temperature viscosity limit

of silicate liquids η∞M is 10−2.93 Pa·s [26]. Expressed in

dPa·s, it is log η∞M = −1.93 dPa·s.

When expressed using the parameter α characteristic

for the AM model and assuming that the viscosity at Tr

is 1013 dPa·s, the MYEGA equation can be transformed

into the following form [25]:

log ηMYEGA = log η∞M + (13 − log η∞M)
Tr

T
·

· exp

[(

17α

1.2(13 − log η∞M)
− 1

)

(

Tr

T
− 1

)

] (4)

If log η∞M = −1.93 dPa·s is replaced into Eq. (4), the

equation is transformed into:

log ηMYEGA = −1.93+

+ 14.93
Tr

T
exp

[

(0.95α − 1)

(

Tr

T
− 1

)] (5)

It should be noted that for the referential temperature

Tr viscosity is assumed to be always 1013 dPa·s. Accord-

ing to the presented analysis Yue [27] states that there

is an excellent correlation between the glass transition

temperature Tg determined using the DSC method at the

rate of 10 K/min and the temperature at which viscosity

is η = 1013 dPa·s. Therefore, the referential temperature

Tr is the same as the temperature assumed by Yue [27].

Let us analyse both possibilities, with different and

the universal η∞ values in the AM and VFT models.

2.1. Viscous flow equations with different η∞ values

The AM model

We start from the obtained result [26] that the aver-

age value of high-temperature viscosity limit in the AM

model is log η∞A = −0.74 dPa·s. By substituting this

value for log η∞A in Eq. (2), it is transformed into the

following equation:

log ηAM = −0.74 + 13.74

(

Tr

T

)α

(6)

It should be mentioned that the AM model provides

physically unrealistic high values of η∞ for nearly all

of the Corning compositions. This result follows di-

rectly from non-physical divergence of configurational

entropy that has been predicted by the AM model. This

divergence is physically unrealistic because only a finite

number of configurations are available for any system.

In contrast to the AM model, the VFT and MYEGA

models correctly predict that configurational entropy is

convergent for the high temperature limit.

The VFT model

The VFT equation can be expressed using the param-

eter α characteristic for the AM equation and so trans-

formed to obtain [25]:

log ηVFT = 13 + (13 − log η∞V)
1 − T

Tr

T
Tr
+ 1.2
α
− 1

(7)

This modification of the VFT equation is not quite

trivial. We used result, obtained by Avramov [9], that,

between T◦ and Tr following relationship is fulfilled:

T◦/Tr = 1−1.2/α. In this way we eliminate the presence

of temperature T◦ in explicit form in the VFT equation.

At present, there are some controversies regarding the

physical meaning of T◦ in the VFT equation. The VFT

model predicts that at finite temperature T◦ the config-

urational entropy becomes zero and it is considered a

major deficiency of this model.
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Assuming that log η∞V = −2.87 dPa·s, which is the

average value of high-temperature viscosity limit for the

VFT model [26], we obtain:

log ηVFT = 13 + 15.87
1 − T

Tr

T
Tr
+ 1.2
α
− 1

(8)

In contrast to the AM model, the VFT model produces

comparatively low values of η∞. This is a by-product of

non-physical divergence of viscosity at finite tempera-

ture T◦ that is followed from the VFT function. In that

way, all three equations for viscous flow are expressed

through the parameter α and the ratio T/Tr, so they can

be compared directly.

2.2.Viscous flow equations with the universalη∞ values

We now assume that log η∞ has the same value for all

three models, i.e., log η∞ = −1.93 dPa·s.

In that case, the expression for the viscous flow based

on the MYEGA model remains the same (Eq. 5). The

expressions for log η based on the AM and the VFT

models are obtained using log η∞ = −1.93 dPa·s as a

value for log η∞A and log η∞V in Eqs. 2 and 7, respec-

tively. Therefore:

log ηAM = −1.934 + 14.93

(

Tr

T

)α

(9)

log ηVFT = 13 + 14.93
1 − T

Tr

T
Tr
+ 1.2
α
− 1

(10)

Subtracting the right hand side of Eq. 9 from the right

hand side of Eq. 6 we obtain the difference of viscos-

ity by the AM model, depending whether the average

value or the universal value of log η∞ is taken. The same

is true for the VFT model, when we apply the same

method for Eqs. 8 and 10. Therefore, the difference for

the AM model is as follows:

∆ log ηAM = 1.19 − 1.19

(

Tr

T

)α

(11)

and for the VFT model:

∆ log ηVFT = 0.94
1 − T

Tr

T
Tr
+ 1.2
α
− 1

(12)

For silicates it holds that α = 1.2 + 6x [8,9].

We use the composition x meaning a “molar frac-

tion” as defined by Avramov [8]. In that work, the

silicates were considered as solution of (1 − x) mo-

lar fraction of SiO2 and the sum of molar fraction

of other oxides (x). For instance, the molar fraction

of (CaO)
0.23

(Al2O3)
0.15

(SiO2)
0.62

is x= 0.38. Relation

α = 1.2 + 6x is applicable for alumosilicates containing

also Ca and/or Mg, when composition (molar fraction) x

is calculated in presented way. Taking this, for silicates

the following equations are obtained:

∆ log ηAM = 1.19 − 1.19

(

Tr

T

)(1.2+6x)

(13)

and

∆ log ηVFT = 0.94
1 − T

Tr

T
Tr
+ 1.2

(1.2+6x)
− 1

(14)

In most types of inorganic glasses direct covalent

bonds exists, which form network and short-range or-

dering. But unlike crystals, the order does not exist

at long distance. In the viscous flow of silicate glass-

forming melts, two oxygen ions belonging to different

though adjacent silicon ions exchange places. The result

of this “switching of bends” is that oxygen exchange

their host silicon ions [16].

III. Testing of the obtained results

Both approaches presented above in subsections 2.1

and 2.2, were tested.

It is known that the thermal properties of multi-

component silicate glasses, glass-ceramic materials and

characteristics of silica liquids attract a great attention

[28,29]. According to Zheng et al. [26] Corning glass

liquids used for evaluating η∞ values have some limited

composition range. SiO2 was in the interval from about

58 mol% to 75 mol%. Additionally, the authors tested

31 other liquids including metallic, molecular and ionic

systems, although data concerning composition range of

these liquids are not clearly defined. In this work we

take into consideration only 6 systems, but they cover

much wider composition range of SiO2 than in work

done by Zheng et al. [26]. The composition range that

has been taken into account to discuss the universality of

Table 1. Materials, referential temperature Tr (obtained from cited experimental data),
molar fraction x and fragility parameter α

Material Tr [K] x α Ref.

(CaO)
0.25

(MgO)
0.25

(SiO2)
0.5

996.3 0.500 4.200 [30]

(CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

1133.0 0.500 4.200 [30]

(CaO)
0.44

(Al2O3)
0.44

(SiO2)
0.12

1140.1 0.880 6.480 [30]

(Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

1096.0 0.250 2.700 [30]

(CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

1153.0 0.230 2.580 [30]

(CaO)
0.376

(SiO2)
0.624

1064.4 0.376 3.456 [8]
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the η∞ was from 0.12 mol% to 77 mol% of SiO2 includ-

ing materials in the middle of this interval with 50 mol%

of SiO2.

The particular systems that are used for testing are

listed in Table 1 with corresponding data for referential

temperature Tr, molar fraction x and fragility parameter

α that were used for calculating viscosity. The presented

referential temperatures Tr, have been obtained by ex-

trapolation experimental data. These temperatures differ

less than 3% from data for Tg which are given by Sipp et

al. [30]. For (CaO)
0.376

(SiO2)
0.624

, the value of referen-

tial temperature Tr = 1064.4 K has been obtained using

the expression Tr(L) = TgSiO2
/[1.26+3.6L(1−L)]Tr and

data TgSiO2
= 1435 K and L = 0.030 [8].

The present study performs testing of the obtained re-

sults for 6 particular compositions. This amount is not

enough to decide, which of the models will always give

the best results and which of them would have the prior-

ity in prediction comparing to the other two models. But

this number of materials, that have a different composi-

tion, will be sufficient to detect differences if they exist

by applying these three models.

The selected silicate liquids may show differ-

ent characteristics on viscosity, for example lu-

bricant effect for (CaO)
0.376

(SiO2)
0.624

and the

charge compensation effect of Al3+ cation for

(Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

. This diversity of

materials is useful, because we have the possibility to

observe behaviour of the three models in situations with

possibly different viscous characteristics.

Figures 1a,b show the 3D diagrams of the differences

∆ log ηAM and ∆ log ηVFT between the values of the func-

tions obtained when we use the average and univer-

sal η∞ for temperature ratio 1 ≤ T/Tr ≤ 2 and in a

wide range of x. Analogous 3D diagrams of the dif-

ferences ∆ log ηAM and ∆ log ηAM for temperature ratio

1 ≤ T/Tr ≤ 1000 are presented in Figs. 1c,d, respec-

tively. Figures 1 is obtained according to Eqs. 13 and 14.

Figure 2a presents viscosity curves of

(CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

obtained from the

AM model with the average and the universal values

η∞, that is from Eqs. 6 and 9 respectively as well as the

experimental viscosity curve on the basis of the data

from [30]. Figure 2b presents viscosity curves of the

same material obtained for the VFT model with the

average and the universal values η∞ , that is from Eqs.

8 and 10, respectively, together with the mentioned

experimental curve. The results of our testing on the

systems (CaO)
0.376

(SiO2)
0.624

are presented in Fig. 3.

This material is an example of a system with a weak

lubricant effect. The curves in Fig. 3a are obtained from

Eqs. 6 and 9 for the AM model with the average and

the universal values of log η∞. The analogous curves

for the VFT model on Fig. 3b were calculated on the

basis of Eqs. 8 and 10. In both cases the data for the

experimental curves are taken from the reference [31].

Figures 4a,b show the viscous func-

tions for (CaO)
0.25

(MgO)
0.25

(SiO2)
0.5

and

(CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

, respectively, obtained

from the AM, VFT and MYEGA model with the

universal value of log η∞, that is based on Eqs. 9,10 and

5. The experimental curves in these figures are obtained

on the basis of the data from [30].

Table 2 presents the values of standard error of the

estimate (S EE) for the functions calculated on the ba-

sis of the equations presented in sections 2.1 and 2.2

in comparison to the experimental values for the tested

materials.

The standard error of the estimate is a measure of the

accuracy of predictions. It is expressed generally as:

S EE =

√

√

∑

(

Yical − Yi exp

)2

N − 2
(15)

where Yical is estimated (calculated) value, Yi exp is ex-

perimental value and N is number of observations. In

our case, the S EE was calculated as:

S EE =

√

√

∑

(

log ηical − log ηi exp

)2

N − 2
(16)

where log ηi exp is experimental value of viscosity and

log ηical is calculated value of viscosity by the given

model at the same temperature. The temperature range,

where the numbers of observations N for these calcu-

lations belong, was different (this range depends on the

material). Generally, the minimal temperature that ap-

pears was 969 K, and maximal 2449 K. The number of

observations N that was used for calculations of S EE

varied from 23 to 33.

IV. Discussion

Figure 1 shows the 3D diagrams of the difference be-

tween the values of the function for a given model, in

the case when they are calculated with the average and

with the universal log η∞.

Results shown in Figs. 1a,b are included to that in

Figs. 1c,d, respectively, although it seems that these re-

sults do not correspond to each other. The reason for

this is a difference in the range of T/Tr that was shown

in these figures. Figures 1c,d which include very high

temperatures, cover a wider temperature range. As a re-

sult of that, they roughly represent what happens with

the differences of viscosity functions. On the other hand,

Figs. 1a,b present a focused view in the narrow temper-

ature interval around Tr. Figures 1c,d do not have such a

good “resolution” to be able to show this with all details.

From Figs. 1a,b, it is obvious that in the case T/Tr > 2

the values of ∆ log η will be higher than 1.0 and smaller

than −0.8 for the AM and VFT model, respectively. Be-

cause the interval of T/Tr presented in Figs 1c,d is up to

T/Tr = 1000, these values of ∆ log η are achieved at the

very beginning of the T/Tr axis. As a result, the ordi-

nate axes in these figures begin with the values that are

higher than 1.0 and smaller than −0.8. It should be men-
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(a) (b)

(c) (d)

Figure 1. Differences ∆log η in dPa·s obtained by using Eq. 13 for AM and Eq. 14 for VFT model. (a) ∆log η
AM

when T/Tr is
in the range from 1 to 2; (b) ∆log η

VFT
when T/Tr is in the range from 1 to 2; (c) ∆log η

AM
when T/Tr is in the range

from 1 to 1000; (d) ∆log η
VFT

when T/Tr i in the range from 1 to 1000, where Tr is the referential temperature
at which the viscosity is 1013 dPa·s

tioned that the value of 1.19 is indicated along whole or-

dinate axis in Fig. 1c, because differences between the

∆ log ηAM values appear only at further decimals and pro-

gram for calculation does not present them.

As it can be seen from Figs. 1a,b, the values of the

AM function will depend to a larger extent on whether

the average or the universal value for η∞ is taken than in

the case of the VFT function. For both models, however,

in the temperature interval 1 < T/Tr < 1.2, it is less

important which η∞ has been taken for calculation. It is

evident that in this temperature interval the differences

∆ log η are small and their dependence on composition

x is negligible for both models.

With the increase of temperature and x, the abso-

lute values of ∆ log η will increase for both models. The

AM function will have higher values with the average

log η∞ than for the universal one, but for the VFT model

we have the opposite case. When the temperature is in-

creased further (Figs. 1c,d) the values of ∆ log η for both

models will be the differences between the average and

the universal value of log η∞ This follows directly from

Eqs. 11 and 12, where ∆ log η for T → ∞ will have

values 1.19 and −0.94 for the AM and VFT model, re-

spectively.

Figures 2 and 3 show the dependency of log η

on T/Tr for (CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

and

(CaO)
0.376

(SiO2)
0.624

, respectively. These figures show

that with the AM model the values of log η are higher

if calculated with the average values of log η∞ than

with the universal values when T/Tr ≥ 1. If the VFT

model is applied, the situation is the opposite. As it was

mentioned above, this was correctly predicted by the

3D diagrams in Fig 1. It is obvious from Figs. 2a,b that

the values of log η for (CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

for each of the models separately, are highly similar,

regardless of whether they are calculated with the

average or the universal values of log η∞. On the graphs

in Figs 2a,b the ratio of temperature T/Tr was up to

1.1. The 3D diagrams from Fig. 1 also predicted that

in the temperature interval 1 < T/Tr < 1.2, for both

models it is less important which η∞ has been taken for

calculation.

A completely different situation is observed in

Figs 3a,b which represent viscous functions for

(CaO)
0.376

(SiO2)
0.624

. There is a weak lubricant effect

with these alloys. As it was mentioned by Avramov

[8] a very small amount of network modifiers added

to pure SiO2 can cause a drastic decrease of viscosity
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(a) (b)

Figure 2. Viscosity curves of (CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

obtained from: (a) the AM model with the average value of log η∞A

(Eq. 6) and with the universal value of log η∞ (Eq. 9); (b) the VFT model with the average value of log η∞V
(Eq. 8) and

with the universal value of log η∞ (Eq. 10). The plot of log ηexp in [dPa·s] is based on the data from [30].

Tr is the referential temperature at which the viscosity is 1013 dPa·s

(a) (b)

Figure 3. The viscosity curves of (CaO)
0.376

(SiO2)
0.624

obtained from: (a) the AM model with the average value of log η∞A
(Eq.

6) and with the universal value of log η∞ (Eq. 9); (b) the VFT model with the average value of log η∞V
(Eq. 8) and

with the universal value of log η∞ (Eq. 10). The plot of log ηexp in [dPa·s] is based on the data from [31].

Tr is the referential temperature at which the viscosity is 1013 dPa·s

at the temperature equivalent to the Tg of pure SiO2.

It was shown [8] that the effect of a lubricant can be

calculated by introducing lubricant coefficient ki whose

values are between 0 and 1 and lubricant molar frac-

tion Li = xiki. Total lubricant fraction is L =
∑

Li.

In this way the decrease of Tr influenced by lubricants

with silicates can be represented with good approxima-

tion by equation Tr(L) = Tg(SiO2)/[1.26 + 3.6L(1 − L)].

With (CaO)
0.376

(SiO2)
0.624

it holds that k = 0.08 and

x = 0.376 (i.e. L = 0.030) [8]. Figure 3 shows viscous

functions for the temperature interval 1.7 < T/Tr < 2.1.

As it can be seen from Fig. 1, in that range of T/Tr the

differences in the values of the AM and VFT functions

taken separately are much larger than in the temperature

range which is about Tr. According to the 3D diagram,

the values of η for the AM model when calculated with

log η∞A = −0.74 dPa·s and with log η∞ = −1.93 dPa·s

differ for about one order of magnitude. With the VFT

model the differences are somewhat smaller and more

dependent on composition x. For (CaO)
0.376

(SiO2)
0.624

the differences are 1.005 < ∆ log η∞AM < 1.091 and

−0.707 < ∆ log η∞VFT < −0.632 for the given interval

T/Tr.

Another question relates to the extent to which the

calculated viscous functions agree with the experimen-

tally obtained results.

From Figs. 2b and 4a it is obvious that the values of

the VFT function, which are calculated with the univer-

sal value of log η∞ within the range of low viscosity, dif-

fer from the measured ones for almost one order of mag-

nitude. The same has been implied from Figs. 3a and 4b

for AM functions calculated with the universal value of

log η∞. In all these cases, the slope of calculated curves

becomes slightly different in comparison with the slope

of experimental ones. Therefore, we can conclude

that the VFT and AM functions, calculated with the
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(a) (b)

Figure 4. The viscosity curves of: (a) (CaO)
0.25

(MgO)
0.25

(SiO2)
0.5

and (b) (CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

obtained on the basis of
Eqs 9,10,5 for the AM, the VFT and the MYEGA model, respectively. The plot of experimental curves log ηexp in [dPa·s] is

based on the data from [30]. Tr is the referential temperature at which the viscosity is 1013 dPa·s

Table 2. The standard error of estimate (SEE) for the functions calculated on the basis of the equations from section 2 in
relations to experimental values for the tested materials

Material
S EE for AM S EE for AM S EE for VFT S EE for VFT S EE for

η∞ average η∞ universal η∞ average η∞ universal MYEGA

(CaO)
0.25

(MgO)
0.25

(SiO2)
0.5

0.159 0.177 0.233 0.314 0.152

(CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

0.236 0.387 0.238 0.208 0.289

(CaO)
0.44

(Al2O3)
0.44

(SiO2)
0.12

0.489 0.685 0.45 0.35 0.56

(Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

0.666 0.851 0.604 0.498 0.734

(CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

0.147 0.103 0.203 0.303 0.096

(CaO)
0.376

(SiO2)
0.624

0.097 1.138 1.206 1.789 0.118

universal value of high temperature viscosity limit are

less applicable. On the other hand, Fig. 3 shows that

the good agreement with experimental curves appears

with the AM function calculated with average value of

log η∞. In contrast to this, both calculated VFT func-

tions as well as the AM function which is calculated

with the universal value log η∞, are shifted along the

vertical axis and differ in relation to the measured values

in the whole range of low viscosity.

Table 2 gives the values of S EE which indicate the

agreement of the AM and the VFT functions, calculated

with the average and the universal value of log η∞, in

relation to the experimental functions. It also gives the

values of SEE agreement of the MYEGA function cal-

culated according to Eq. 5. As it can be seen from Table

2 it is not possible to say which of the analysed functions

shows the best agreement with the experimental one and

which will always give the lowest value of S EE.

From Fig. 3 and from data in Table 2 for

(CaO)
0.376

(SiO2)
0.624

, it is obvious that calculated vis-

cosities with the use of average values of η∞ are closer

to the experimental results than those with the use of

universal η∞ value, no matter whether the AM or VFT

model is used. Therefore, it may be suggested that

the average η∞ value should be used for each model

rather than the universal η∞ values for precise predic-

tions of viscosity. But, as presented in Table 2, it is

not possible to say that analysed functions, if calcu-

lated with average values of η∞, will always give the

best agreement with the experimental one. For exam-

ple, S EE of VFT functions, which are calculated with

universal value of η∞ for (CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

and (Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

are smaller than

S EE of VFT functions with average value of

η∞. This also holds for AM functions in case of

(CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

. For this material, S EE

for AM function when calculated with average value of

η∞ is 0.147, while S EE with universal value of η∞ is

0.103.

The lowest values of S EE with materials from Table

2 are obtained for (CaO)
0.11

(Al2O3)
0.12

(SiO2)
0.77

cal-

culated with the MYEGA function (0.096). A simi-

lar value (0.097), is obtained for (CaO)
0.376

(SiO2)
0.624

with the AM function when it is calculated with

the average value log η∞A. On the other hand, with

(CaO)
0.376

(SiO2)
0.624

we also observe the highest S EE

value of 1.789, obtained when the VFT function is cal-

culated with the universal value of log η∞.

From Table 2, it is obvious that for

the melts (CaO)
0.44

(Al2O3)
0.44

(SiO2)
0.12

and

(Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

the values of

S EE are high, regardless of model and the use of

the average or universal η∞ value. The material

(CaO)
0.44

(Al2O3)
0.44

(SiO2)
0.12

does not belong to

the composition range considered in [26], where

the universality of the high-temperature viscosity
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limit was introduced. Therefore, for this material

the proposed universal and average values of η∞ are

probably not appropriate and should be corrected.

Also, the charge compensation effect of Al3+ cation for

(Na2O)
0.125

(Al2O3)
0.125

(SiO2)
0.75

probably requires the

introduction of additional correction in calculation of

the η∞ values.

In case of (CaO)
0.376

(SiO2)
0.624

, the high value of

S EE for the VFT model is obtained, regardless whether

we use the average or universal value of η∞. The VFT

model was derived empirically, but justifications of this

model are based on estimation of the average activa-

tion energy. Instead of the average energy barrier, the

AM model considers the average jump frequency of the

building units responsible for the viscous flow [4–6]. As

a result, the main difference of the two approaches ap-

pears for materials when the small amount of impurity is

added to pure SiO2. From Table 2 follows that the VFT

model is less reliable in prediction of lubricant effect re-

gardless which value of η∞ is used. On the other hand,

calculated S EE for the AM model, with average value

of η∞ and for the MYEGA model, have the satisfactory

values. However, when the lubricant effect is calculated

with the universal log η∞ value, the AM model shows

inaccurate results. Therefore, for precise prediction of

viscosity in materials with lubricant effect it is impor-

tant which model and which value of η∞ is used in cal-

culations.

It can be noticed from Table 2 that the differences in

the values of SEE in relation to whether the functions

are calculated with the average or the universal log η∞,

are the greatest with (CaO)
0.376

(SiO2)
0.624

. This is un-

derstandable and also in accordance with the predic-

tions of the 3D diagram in the case where T/Tr > 1.2.

With other materials we do not encounter such big dif-

ferences in the values of S EE in relation to whether

the calculation was done with the average or the uni-

versal high temperature viscosity. It is important to em-

phasize that in these cases the temperature interval un-

der consideration is closer to Tr. For that reason, in

this restricted T/Tr interval, if the experimental func-

tion showed good agreement with the function calcu-

lated with the average high temperature viscosity limit,

it also shows good agreement with the one calculated

with the universal log η∞. Unlike Fig. 2 which shows

the functions with both the average and the universal

log η∞, Fig. 4 shows all three viscous functions cal-

culated only with the universal log η∞. As we have

found, in the interval 1 < T/Tr < 1.2 the functions

calculated with the average high temperature viscosity

limit will behave in the similar way. It can be seen in

Fig. 4b that for (CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

all three

functions show quite good agreement with the exper-

imental curve. It is also observed from Fig. 4a that

for (CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

with the increase in

temperature, the VFT begins to show greater devia-

tions. However, a general statement that the VFT func-

tion gives the worst results cannot be made. It can be

seen from Table 2 that when the S EE values at each

of these materials are compared for the three models

tested here, sometimes the S EE for the MYEGA is the

lowest, sometimes the S EE for the VFT is the lowest

and sometimes it is for the AM function. Therefore,

for (CaO)
0.25

(Al2O3)
0.25

(SiO2)
0.5

it is the VFT which

shows the best correlation with the experimental results

(Fig. 4b and Table 2) when calculated with the universal

log η∞.

V. Conclusions

3D diagrams can successfully predict the difference

in behaviour of viscous functions when average and uni-

versal high temperature limit is applied in calculations.

The values of the AM functions are more affected by

the choice of whether to take the average or the univer-

sal value for η∞ than it is the case with the VFT model.

In the temperature interval 1 < T/Tr < 1.2 for both

models it is less important which η∞ has been taken for

calculations. The differences between the values of vis-

cous functions are more significant for higher tempera-

tures in relation to referential Tr.

It can be concluded that the MYEGA function proved

to be just as successful as the AM function in predicting

the lubricant effect and showed good agreement with the

experimental results.

The test and values of standard error of estimate

(S EE) show that there are no general rules whether

the average or universal high temperature viscosity limit

should be taken to get the best agreement with the ex-

perimental functions.
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