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Abstract
Characterization of energy conversion of multiferroic materials is concerned with multifunctional properties of 
materials, a topic that is fascinating from the scientific point of view and important for the modern technology. 
The complex characterization of multiferroic structures suffers at present from lack of a systematic experimen-
tal approach and deficiency of multifunctional magnetoelectric properties testing capabilities. Compactness 
and high frequency energy conversion capacity are the main reasons of invention and improvement of sophisti-
cated materials which are prepared for high-speed computer memories and broadband transducer devices. As 
a consequence, one can easily notice an intense search for new materials for generation, transformation and 
amplification of magnetic and electric energies. In this scenario, the combination of excellent piezoelectric and 
magnetic properties makes lead iron niobate Pb(Fe1/2Nb1/2)O3 (PFN) an attractive host material for applica-
tion in integrated magnetoelectric energy conversion applications. PFN multiferroic materials are attractive 
for commercial electroceramics due to high value of dielectric permittivity and magnetoelectric coefficients as 
well as relatively easy synthesis process. However, synthesis of PFN ceramics is mostly connected with forma-
tion of the secondary unwanted pyrochlore phase associated with dramatic decrease of ferroelectric proper-
ties. The authors have successfully reduced this negative phenomenon by Mn doping and finally present high 
piezoelectric and magnetoelectric energy conversion efficiency in fabricated PMFN ceramics.
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I. Introduction
Lead iron niobate, Pb(Fe1/2Nb1/2)O3 (PFN) belongs to 

type-I multiferroics in which ferroelectricity is related to 
the shift of ferroelectric active d0 ions (Nb) from the cen-
tre of regular oxygen octahedrons - O6, while magnetism is 
related to the presence of dn iron ions with a natural mag-
netic moment [1]. The ions of iron (Fe) and niobium (Nb) 
are substituted randomly at the octahedral B positions in 
perovskite ABO3 structure, whereas lead (Pb) goes into 
the A position. The most important fact is, from the mag-
netoelectric (ME) coupling point of view, that the angles 
between the connecting lines of B cation and oxygen are 
equal to 180 degree, providing optimum conditions for 
magnetic ordering due to the superexchange interaction. 

Admixed PFN ceramic is an interesting material for 
many electronic and electromechanical applications. In 
the pure PFN a phase transition from a ferroelectric to par-
aelectric phase has a diffusive character but adding small 
amounts of dopants decrease or increase the area of the 
phase transition. Adding admixtures of elements with sim-
ilar ionic radii, as Mn, leads to location of these ions in B 
positions and this is connected with a greater degree of the 
structure perfection and higher microstructural homogene-
ity manifested in narrower phase transition area [2]. Ad-
mixing PFN with elements of larger ionic radii, such as Sr, 
K and La, causes widening of the diffusive phase transition 
area associated with dielectric losses increase [3]. Com-
pared to the non-admixed PFN ceramic, admixed speci-
mens are characterized by a better set of magnetoelectric 
as well as dielectric parameters and lower dielectric losses.

The influence of the Ba and Ca substitution on ME 
coefficient has been considered as Pb ions in PFN have 
leading role in magnetoelectric coupling. In particu-
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lar, the decrease of TN with increase of the Ba doping 
was explained by possible involvement of the Pb ions 
in the superexchange of the iron ions [4,5]. Such an in-
fluence is observed also for Ti- doped solid solutions of 
PFN. The Ti-doped PFN phase diagram of the magnet-
ic and ferroelectric properties created on the basis of the 
piezoelectric, Mossbauer and magnetization data have 
recently been published [6,7]. 

Investigation of Mn-doping can also be an interest-
ing topic. Many works have been presented and con-
firmed the room temperature ferromagnetism in Mn-
doped semiconductors. Good example can be ZnO 
semiconductor, which is also a well-known piezoelec-
tric and electro-optic material, and incorporation of Mn 
induced ferromagnetism in ZnO that lead to many new 
multifunctional phenomena. Furthermore, the Mn-doped 
ZnO material has capability to be produced in powder 
form with room-temperature multiferroic properties ob-
tained by calcination at temperatures below 500 °C [8]. 
Above room temperature magnetic transition Tc values 
have been reported additionally in Mn-doped GaN [9–
11] and Ge [12]. Consequently, Mn-doped semicon-
ductors fabrications capability results in new spintronic 
devices as spin-valve transistors, spin light-emitting di-
odes, non-volatile memory and logic devices.

Finally, it is important to mention that lower con-
tent of pyrochlore phase is associated with above men-
tioned PFN composition modification and it is possible 
to obtain pure phase ceramics in simple and non expen-
sive route. For example, lead iron scandium niobate PF-
ScN ceramics can be also produced as pure perovskite 
phase by conventional solid-state reaction method via 
mixing oxide method (MOM). Dense ceramics (95% of 
the theoretical density) with optimized dielectric prop-
erties can be obtained in air atmosphere high tempera-
ture sintering at 1140–1180 °C for 2 h [13]. Similar be-
haviour has been detected in zinc doped PFN, where at 
higher values of zinc content (x > 0.7), the pyrochlore 
phase appears but addition of BaTiO3 suppresses the 
pyrochlore phase and reduces the magnitude of phase 
transition area in the relaxor region [14].

The main goal of this work is to examine possible fer-
roelectric-ferromagnetic coupling increase with associ-
ated ME effect enhancement by B position Mn doping 
of PbFe1/2Nb1/2O3. Consequently, our work presents a de-
tailed report of the relationships between two samples: 
one with small pyrochlore phase content and the second 
with pure perovskite phase Mn-doped considering mag-
netic field intensity influence on output characteristics. 
Finally, Mn-doped PMF material with enhanced magne-
toelectric properties has been proven practically in mag-
netic field driven in piezoelectric transformer.

II. Experimental procedure
The preparation of PbFe1/2Nb1/2O3 (PFN) and 

Pb(Fe1/2Nb1/2)O3 doped with 1 at.% of Mn (PMFN) ce-
ramics was performed by classical mixed oxide meth-
od (MOM) using PbO, Fe2O3, Nb2O5 and MnO2 oxides. 
The milling process was carried out in agate mortar dur-
ing 8 h time in air atmosphere with subsequent spec-
imens forming by pressing the powders in steel die. 
The high temperature processing was performed in two 
stages: i) the first calcination performed at Ts = 800 °C 
for ts = 3 h with subsequent milling and pressing of the 
powders in steel die, ii) the final high temperature sin-
tering in air at T = 1125 °C for 2 h. 

The X-ray diffraction profiles of the prepared sam-
ples were recorded using PANalytical X’Pert Pro Dif-
fractometer and subsequent phase analysis was per-
formed taking advantage from X’Pert HighScore Plus 
software. The obtained PFN and PMFN samples mi-
crostructure examinations were made using a HITA-
CHI S-4700 SEM. Dielectric measurements were per-
formed on a QuadTech 7600 Plus Precision LCR Meter, 
in frequency range from 100 Hz to 1 MHz. The hystere-
sis loops were recorded using the high voltage amplifier 
Matsusada AMT-5B20 (±5 kV, 20 mA, <20 kHz). The 
evaluation of the piezoelectric coefficients were car-
ried out using the resonance -antiresonance method fol-
lowed by samples poling in silicon oil at 120 °C in elec-
tric field of 2 kV/mm. For the magnetoelectric effect 
measurements the PFN and PMFN samples were placed 

Figure 1. SEM images of: a) PFN and b) PMFN ceramics

a) b)
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in an external constant (HDC) and sinusoidal magnetic 
field (HAC from 10 Hz to 6.5 kHz) produced by an elec-
tromagnet and Helmholtz coils, respectively. The direc-
tion of electrical polarization of the samples was direct-
ed perpendicularly to both magnetic fields.

III. Results and discussion

3.1 Material testing
The density values of PFN and PMFN ceramics 

measured by Archimedes method decreased almost im-
perceptibly from 8.08 to 8.06 g/cm3 respectively. The 
microstructure and grain size of obtained samples are 
presented in Fig. 1. The small amount of Mn doping has 
practically no influence on the average grain size and in 
both cases well developed grains were found to be uni-
formly distributed across the samples surfaces. The av-
erage grain size of the obtained PFN and PMFN ceram-
ics is about 2.3 μm.

3.2 XRD characterization
The X-ray diffraction patterns of the PFN and PMFN 

samples with characteristic peaks of perovskite struc-
ture are presented in Fig. 2. A rhombohedral R3c space 
group was assigned to both PFN and PMFN composi-
tions and coexistence of pyrochlore space group for the 
pure PFN ceramics was traced only in case of the un-
doped PFN ceramics (Fig. 2a).

It is distinctly visible, that in spite of only one per-
centage of Mn doping, this has distinctive role in pure 
perovskite phase formation in the PMFN material. The 
lattice parameters of the investigated perovskite phases 
determined by the Rietveld refinement were calculated 
and listed in Table 1. It can be stated that even addition 
of a small amount of Mn (1 at.%) in B position of ABO3 
perovskite structure leads to the detectable increase of 
the a and c unit cell parameters of the PMFN ceramics 
due to the larger ionic radius of Mn.

Figure 2. XRD diffraction pattern of: a) PFN and b) PMFN ceramics

a)

b)

Table 1. The parameters of the perovskite unit cell of the investigated ceramics

a [Å] b [Å] c [Å]
PFN 5.6677 5.6677 13.904

PMFN 5.6726 5.6726 13.941
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3.3 Dielectric properties measurement
The temperature dependencies of dielectric permit-

tivity and dielectric losses of both obtained samples 
were measured at 1 kHz frequency using an Quadtech 
7600 LCR Meter for evaluation of Curie temperature of 
ferroelectric phase transition from rhombohedral to reg-
ular (Fig. 3a). The dielectric loss coefficient was meas-
ured at 1 kHz by the same method and the measured 
characteristics are presented in Fig 3b. It is clearly seen, 
that only 1 at.% of Mn doping plays significant role in 
the phase transition temperature and character with con-
sequent change of the obtained materials physical prop-
erties. The Mn addition caused the Curie temperature 
shifting from 115 °C to 107 °C with simultaneous drop 
in dielectric permittivity maximal value from 3300 to 
3115 finally associated with less diffused phase transi-
tion character. 

Generally, a phase transition from a ferroelectric to 
paraelectric state in PFN has a diffusive character. A 
wide range of phase transition temperature is related to 
the degree of structure ordering and arrangement - fill-

ing of iron Fe3+ and niobium Nb5+ ions (B positions in 
perovskite ABO3 structure). The better arrangement, the 
narrower temperature range of the phase transition is ob-
served so that we can state that adding small amounts of 
Mn dopant decrease visible the area of the phase transi-
tion. Consequently, a location of Mn ions in B position, 
due to the similar ionic radii, is connected with a greater 
degree of the structure perfection and higher microstruc-
tural homogeneity manifested in narrower phase transi-
tion area [2]. 

A similar tendency connected with structure or-
dering is also observed in changes of loss tangent. As 
expected, a diffuse type of phase transition has been 
observed with no maxima in the range of the phase tran-
sition temperatures for the pure PFN (Fig. 3b), but for 
higher temperature values the shape of dielectric losses 
curve becomes sharper indicating dramatic conductivi-
ty increase. The level of dielectric loss value however, 
is very low for PFN as well as PMFN samples and is not 
higher than 0.05 below the TC indicating good dielectric 
properties (Fig. 3b).

a)

a)

b)

b)

Figure3. Dielectric permittivity (a) and dielectric loss tangent (b) as a function of temperature at frequency of 1 kHz for PFN 
and PMFN samples

Figure 4. PFN and PMFN ferroelectric hysteresis loops -polarization versus electric field (P-E) curves at room
temperature
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In the Fig. 4 the ferroelectric hysteresis loops of 
PFN and PMFN ceramics are presented. As it was sup-
posed, from the round shape of dielectric permittivity 
in the vicinity of TC, PFN composition with small py-
rochlore phase content exhibits rounded shape loops 
whereas, PMFN ceramics has well saturated hysteresis, 
with relatively low losses and high remanent polariza-
tion of 2.5 mC/cm2.
3.4 Electromechanical energy conversion efficiency

Measurement of piezoelectric coefficient was done 
using standard resonance technique (ANSI/IEEE Std 
176-1987: IEEE Standard on Piezoelectricity). Record-
ed characteristic parameters of the fundamental reso-
nant (indicated in Fig. 5) as well as first overtone values 
were collected and the respective piezoelectric coeffi-
cients have been calculated (Table 2). Resonance and 
antiresonance frequencies were measured together with 
the static capacitance CT

33 of the sample (measured at 1 
kHz below piezoelectric resonances).

Taking into account the values of energy conver-
sion parameters presented in Table 2, the Mn doping 
driven change in piezoelectric coefficients are very sig-
nificant. Having pyrochlore phase content in mind, the 
electromechanical performance can be changed only 
in the case of the phase pure sample. Finally, we can 
clearly state that even small pyrochlore content can de-
crease piezoelectric coefficient dramatically (one order 
of magnitude).
3.5 Magnetoelectric energy conversion efficiency

The magnitude of the magnetoelectric effect (ME) 
in PFN ceramics is determined by the measurement set-
up presented in Fig. 6a. The change in magnetic polar-

ization causes a bound electric charge, which is present 
at the domain wall, and this space charge induces an 
electric field in the electrode surfaces. For the magneto-
electric effect induced voltage measurements the PFN 
and PMFN samples were placed in an external constant 
(HDC) and sinusoidal magnetic field (HAC from10 Hz to 
6.5 kHz) produced by an electromagnet and Helmholtz 
coils, respectively. The direction of electrical polariza-
tion of the samples was directed perpendicularly to both 
magnetic fields (Fig. 6a).

After that, the piezoelectric transformers were fab-
ricated from manufactured PFN and PMFN ceramics. 
The bottom surfaces of disk samples were covered by 
solid silver electrode, whereas opposite electrode pat-
terns are deposited to create input and output parts sepa-
rated by 2 mm insulating gaps, with electrodes’ area ra-
tio equal 1.66 (Fig. 6b). 

The PFN material, due to the coupling between 
magnetization and polarization became electrically po-
larized when placed in magnetic field and the induced 
voltage of 24.3 mV at 1 kHz was recorded (Fig. 7a). 
This value appeared to be two times higher in the case 
of PMFN ceramics so that at the last stage of our exper-
iment we have tested the magnetically induced imped-
ance change in the piezoelectric transformer (PT). In-
vestigations of magnetic field influenced properties of 
PT were essential for our experiment. As it was shown 
in Fig. 7b the frequency shift of 50 Hz and 20 Ω drop in 
PT impedance value under 500 Oe magnetic field bias 
were recorded. Simultaneously, impedance phase shift 
of 150 Hz is also detectable showing alternative way of 
magnetic field intensity detection (Fig. 7b). The collect-

a) b)
Figure 5. Fundamental electromechanical resonant frequency ranges for PFN (a) and PMFN (b) ceramics at room

temperature

Table 2. Electromechanical energy conversion parameters of the investigated ceramics (kp electromechanical coupling factors 
for planar vibrations, d31 piezoelectric coefficient, Qm mechanical quality factor, vR speed of sound in ceramics)

kp
d31

[C/N] Qm
vR

[m/s]
PFN 0.041 27 10-12 535 2400

PMFN 0.4 288 10-12 351 2213
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ed results proved the high magnetic field-sensing detec-
tion capability for the transducer prepared from single 
phase multiferroic PMFN material.

The explanation of the piezoelectric transformer 
high sensitivity to magnetic field bias is that this reso-
nant device gives strong response to even small changes 
in piezoelectric coefficients. Consequently, this device 
has very narrow impedance characteristics with critical 
high sensitivity in impedance peaks, so that it can be in 
such conditions successfully used as magnetic field sen-
sor in such conditions. 

IV. Summary
In this paper a new technique of PFN ceramics man-

ganese doping for magnetoelectric energy conversion 
enhancement and corresponding transformer applica-
tion has been presented. This new method combines the 
results of the phase transition area decrease from a fer-
roelectric to paraelectric phase with lowering its diffu-
sive character. A location of Mn ions in B position due 

to the similar ionic radius is associated with a great-
er degree of the structure perfection and higher micro-
structural homogeneity.

From the piezoelectric energy conversion coeffi-
cients evaluation, it is clearly seen that even small per-
centage of pyrochlore phase plays crucial role in the en-
ergy transfer performance and physical properties of 
obtained materials.

Finally, the authors have been developed a magneto-
electric coefficients measurement technique which will 
provide new information for material engineers who 
are frequently interested in behaviour of materials with-
in wide range of applied magnetic field. The final ef-
ficiently working magnetoelectric transformer applica-
tion will show clearly the response of materials under 
changing magnetic field in the way that is easily ac-
quired by the engineering society.

Acknowledgments: This work was supported by COST 
MP0904 Action.

a) b)
Figure 6. Scheme of Magnetoelectric ME coefficient measurements setup (a) and magnetoelectric transformer impedance 

characteristic dependence on magnetic field intensity (b)

a) b)
Figure 7. Magnetic field influence on electromagnetic voltage value (a) and on impedance modulus and phase

characteristics for PMFN multiferroic material in piezoelectric transformer electrode pattern
configuration (b)
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