

Dielectric properties of bismuth titanate ceramics containing SiO_2 and Nd_2O_3 as additives[#]

Stanislav S. Slavov^{1,*}, Milena Z. Krapchanska², Elena P. Kashchieva¹, Svetlin B. Parvanov¹, Yanko B. Dimitriev³

¹Department of Physics, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria

²Bulgarian Academy of Sciences, Institute of Electrochemistry and Energy Systems, Acad. G. Bonchev Str., Bl. 10, 1113 Sofia, Bulgaria

³Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria

Received 27 December 2011; received in revised form 19 June 2012; accepted 4 July 2012

Abstract

Bismuth-titanate ceramics containing SiO₂ and Nd₂O₃ as additives are synthesized by melt quenching method in the system Bi_2O_3 -TiO₂-Nd₂O₃-SiO₂ in the temperature range of 1250–1500 °C. The phase composition of the obtained materials is determined by X-ray diffraction analysis and energy dispersive spectroscopy. Using scanning electron microscopy different microstructures are observed in the samples depending on the composition. Different values of conductivity, dielectric losses and relative permittivity are obtained depending on the composition. It is established that all investigated samples are dielectric materials with conductivity between 10^{-9} and 10^{-13} (Ω ·cm)⁻¹ at room temperature, dielectric permittivity from 1000 to 3000 and dielectric losses tgδ between 0.0002 and 0.1.

Keywords: bismuth titanate, melt quenching, microstructure, electrical properties

I. Introduction

Aurivillius family oxides including $Bi_4Ti_3O_{12}$ are of great interest in the last years due to their potential for electronic applications as transducers, capacitors, and acoustic piezo-sensors with high temperature piezo-electric properties (because of its high Curie temperature) [1,2]. Many techniques have been employed for preparing a layered structure of bismuth titanate phases including powders and bulk ceramics: molten salt synthesis, co-precipitation, reactive calcinations, sol-gel synthesis, mechanochemical method and others. Between them the crystallisation from melts or glasses [3–6] gives the possibility for easy control of the particle size distribution, morphology and crystallographic orientation. It is well known, that the phase formation and

* Corresponding author: tel: +35 92 8163 450

the properties of Bi₄Ti₃O₁₂ ceramics are strongly influenced not only by the method of preparation, but also by the type and portion of additives. The introduction of Nd₂O₃ as an additive allows the synthesis of materials with improved dielectric and ferroelectric properties, such as high dielectric constant, low dielectric losses, high remnant polarisation and high resistance to fatigue [7–18]. The other advantage of Nd₂O₃ addition is the existence of solid solutions in the system Bi₂O₃-TiO₂-Nd₂O₃. Thus, Kunej *et al.* [19] described the solubility limits of three solid-solutions: Bi_(1.6-1.08x)Nd_xTi₂O_(6.4+0.3x), (0.25 < x < 0.96), Nd_{2x}Bi_xTi₂O₇, (0 < x < 0.35), and Bi_{4x}Nd_xTi₃O₁₂, (0 < x < 2.6).

In the previous works [20,21] it has been shown that the introduction of 20–40 mol% SiO₂ simulates the partial amorphisation of the samples. The main established phases in the super cooled melt are either $Bi_2Ti_2O_7$ and $Bi_4Ti_3O_{12}$ or only $Bi_4Ti_3O_{12}$, depending on the cooling rate and composition. The other important result was that the simultaneous introduction of SiO₂ and Nd₂O₃ as

[#] Paper presented at Conference for Young Scientists -

⁹th Students' Meeting, SM-2011, Novi Sad, Serbia, 2011

fax: +35 92 8685 488, e-mail: stanislavslavov@hotmail.com

additives [21] in the bismuth-titanate ceramics changes the glass-formation ability and electrical properties. These results motivated us to continue our experiments in this field. The purposes of the present work are to prepare polycrystalline or glass-ceramic materials in the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ by melt quenching method and to study their electrical properties depending on processing temperature and composition.

II. Experimental

The nominal compositions of the selected samples in the system Bi_2O_3 -Ti O_2 -Si O_2 -Nd₂ O_3 , are given in Table 1 and Fig. 1. The melting is done in alumina crucibles at the temperature between 1250 and 1500 °C for 10–15 min depending on the composition. The samples are synthesized by fast cooling to room temperature, performed by pouring of the melts between two cooper plates (with cooling rate nearly 10² °C/s). The phase formation is studied by X-ray diffraction analysis (XRD -TUR M62, Cu-K α radiation and Bruker D8 Advanced Diffractometer). Chemical composition is determined by energy dispersive spectroscopy (EDS, EDAX 9900). The microstructure is observed by scanning electron microscopy (SEM-525M, Philips). The electrical conductivity, capacitance and dielectric losses of the selected samples are measured by DC resistible bridge and digital capacity meter E8-4 (1 kHz) using the two-terminal method and a suitable sample holder with graphite electrodes.

III. Results and discussion

3.1 Phase formation

The obtained samples are identified as polycrystalline ceramics (Table 1, samples 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 4C, 4D, 4E) or partially crystallized materials (glass-ceramics) because they have visually crystalline milk like parts and dark or transparent glass regions (Table 1, samples 4, 4A, 4B). These results are also shown in the investigated sections of the system Bi_2O_3 -TiO_2-SiO_2-Nd_2O_3 at 0, 5, 10 and 20 mol% SiO_2. According to the X-ray data (Fig. 2 and Table 1) several phases are identified including $Bi_2Ti_2O_7$ (JCPDS 32-0118), $Bi_4Ti_3O_{12}$ (JCPDS 73-2181), $Bi_{12}TiO_{20}$, (JCPDS 78-1158) and δ - Bi_2O_3 (JCPDS 27-0052).

The increase of the TiO₂ content (above 50 mol%) and the decrease of the Bi₂O₃ content (below 40 mol%) leads to formation of the main phase Bi₄Ti₃O₁₂. At high Bi₂O₃ content (in the range 40–60 mol%) the identified phases are Bi₄Ti₃O₁₂, Bi₁₂TiO₂₀ and δ -Bi₂O₃. The sample 4 (Fig. 2d) is presented as an example of partially crystalline material as its X-ray diffraction pattern

Figure 1. Investigated compositions in the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ at selected sections contains 0, 5, 10 and 20 mol% SiO₂

Starting composition [mol%] Identified Sample phases by XRD Bi₂O TiO, Nd,O SiO. 50 Bi4, Bi12 40 10 1 ---2 25 10 Bi4 65 ---3 Bi4 5 35 60 4 10 30 50 10 Glass + Bi4 5 30 50 20 Bi4, Bi12 6 40 40 20 Bi4, Bi12, δ 7 50 30 20 Bi4, Bi12, δ 8 60 20 20 Bi4, Bi12, δ 9 70 20 10 Bi4, Bi12, δ 10 60 30 10 Bi4, Bi12, δ 50 40 10 Bi4, Bi12, δ 11 12 21 72 7 Р ---9 4A 63 18 10 $Glass + \delta$ 8 4B56 16 20 $Glass + \delta$ 9 4C36 45 10 Bi4 8 4D 32 40 20 Bi4 40 5 5 4E 50 Bi4 P: Bi₂Ti₂O₇, Bi4: Bi₄Ti₃O₁₂, Bi12: Bi₁₂TiO₂₀, δ: δ-Bi₂O₃ 5 1 In tensity (a.u.) In tensity (a.u.) 2,98 2,98 2000 2000 30Bi₂O₃.50TiO₂.20Nd₂O₃ $40Bi_2O_3.50TiO_2.10Nd_2O_3$ • Bi₄Ti₃O₁₂ • Bi, Ti, O, ■ Bi₁₂TiO₂₀ Bi₁₂TiO₂₀ 1500 1500 3,29 2,7 **3**,29 2,71 1000 1000 1,61 1,93 1,61 1.93 2.25 2,25 4 23 500 500 1,9 3,86 5,32 86 5,53 1.36 0 0 20 40 100 ò 20 40 60 80 100 0 60 80 20 (degree) 20 (degree) a) b) 4E Intensity (a.u.) Intensity (a.u.) 2.98 4 3500 2,98 500 40Bi2O3.50TiO2.5SiO2.5Nd2O3 30Bi₂O₃.50TiO₂.10SiO₂.10Nd₂O₃ 3000 • Bi₄Ti₃O₁₂ Bi₄Ti₃O₁₂ 400 δ-Bi₂O₂ 2500 2.37 2,71 300 2000 1.93 1.61 5,53 2,31 1500 4,23 200 • 2,71 1000 1,931,791,61 • δ 3,18 100 8,84 1.45 δ 500 1,16 0 0 40 ò 20 40 60 100 20 100 0 60 80 80 20 (degree) 2θ (degree)

Table 1. Starting compositions and identified phases

Figure 2. XRD patterns of samples with different compositions: a) $40Bi_2O_3 \cdot 50TiO_2 \cdot 10Nd_2O_3$ melted at 1450 °C and fast cooled, b) $30Bi_2O_3 \cdot 50TiO_2 \cdot 20Nd_2O_3$ melted at 1500 °C and fast cooled, c) $40Bi_2O_3 \cdot 50TiO_2 \cdot 5SiO_2 \cdot 5Nd_2O_3$ melted at 1450 °C and fast cooled, and d) $30Bi_2O_3 \cdot 50TiO_2 \cdot 10SiO_2 \cdot 10SiO_2 \cdot 10Nd_2O_3$ melted at 1450 °C and fast cooled

c)

d)

shows the peaks of $\text{Bi}_4\text{Ti}_3\text{O}_{12}$ phase and an amorphous hallo. Additional information about the microstructure was obtained by SEM imaging (Fig. 3). The main observed phase is a solid-solution $\text{Bi}_{4\text{-}x}\text{Nd}_x\text{Ti}_3\text{O}_{12}$ in which the content of Nd_2O_3 varies between 9–18 mol%. These results are in agreement with the data of Kunej *et al.* [19]. They determined the upper solubility boundary to be 26 mol% Nd_2O_3 instead of Bi_2O_3 in the structure of $\text{Bi}_4\text{Ti}_3\text{O}_{12}$. In Fig. 3d it is shown that the amorphous phase contains Bi_2O_3 (around 23–26 mol%), TiO₂ (about 51–52 mol%), SiO₂ (around 12–13 mol%) and Nd_2O_3 (9–12 mol%).

3.2 Electrical characteristics

To compare the electrical properties, we selected four samples from the system Bi_2O_3 -TiO_2-SiO_2-Nd_2O_3 with similar content of Bi_2O_3 and TiO_2. The compositions of the first two of them are $30Bi_2O_3 \cdot 50TiO_2 \cdot xSiO_2 \cdot yNd_2O_3$, (x=10, 0; y=10, 20) and the second two are formulated as: $40Bi_2O_3 \cdot 50TiO_2 \cdot xSiO_2 \cdot yNd_2O_3$, (x=5, 0; y=5, 10). Additionally we measured the electrical properties of two samples synthesized in our previous studies:

 $30Bi_2O_3 \cdot 50TiO_2 \cdot 20SiO_2$, and $40Bi_2O_3 \cdot 50TiO_2 \cdot 10SiO_2$ [21,22]. Arrhenius plots showing the temperature dependence of the conductivity are presented in Fig. 4. It is shown that the glass-crystalline sample containing 20 mol% SiO₂ possesses the highest value of the conductivity.

The increase of the Nd₂O₃ content up to 10 mol% increases the activation energy and the increase of the SiO₂ content up to 10 mol% decreases the activation energy. Co-addition of SiO₂ and Nd₂O₃ up to 5 mol% leads to the activation energy with value close to 1 eV in the temperature range of $1.2-2\times10^3$ K⁻¹. Further increase of the SiO₂ and Nd₂O₃ content to 10 mol% leads to the activation energy of 1.7 eV in temperature range $1.2-2\times10^3$ K⁻¹.

The sample containing 20 mol% SiO₂ is characterised by higher dielectric constant (Fig. 5). The decrease of the SiO₂ content from 20% to 10% leads to the decrease of the dielectric constant (ε_r), but the mixed samples containing SiO₂ and Nd₂O₃ have higher dielectric constant at 820 °C.

More experiments need to be done in order to verify dielectric behaviour of these ceramics, which are now in course.

Figure 3. SEM micrograph and EDS data of samples with different compositions: a) 40Bi₂O₃·50TiO₂·10Nd₂O₃ melted at 1450 °C and fast cooled, b) 30Bi₂O₃·50TiO₂·20Nd₂O₃ melted at 1500 °C and fast cooled, c) 40Bi₂O₃·50TiO₂·5SiO₂·5Nd₂O₃ melted at 1450 °C and fast cooled and d) 30Bi₂O₃·50TiO₂·10SiO₂·10Nd₂O₃ melted at 1450 °C and fast cooling

Figure 4. Arrhenius plots showing the temperature dependence of the conductivity for samples with different compositions: a) 30Bi₂O₃·50TiO₂·20SiO₂ (sample A), 30Bi₂O₃·50TiO₂·10SiO₂·10Nd₂O₃ (sample 4) and 30Bi₂O₃·50TiO₂·20Nd₂O₃ (sample 5) and b) 40Bi₂O₃·50TiO₂·10SiO₂ (sample B), 40Bi₂O₃·50TiO₂·5SiO₂·5Nd₂O₃ (sample 4E) and 40Bi₂O₃·50TiO₂·10Nd₂O₃ (sample 1)

Figure 5. Plot of the relative permittivity and dielectric losses in dependence on the temperature for samples with different compositions: a) 30Bi₂O₃·50TiO₂·20SiO₂ (sample A), 30Bi₂O₃·50TiO₂·10SiO₂·10Nd₂O₃ (sample 4) and 30Bi₂O₃·50TiO₂ 20Nd₂O₃ (sample 5) and b) 40Bi₂O₃·50TiO₂·10SiO₂ (sample B), 40Bi₂O₃·50TiO₂·5SiO₂·5Nd₂O₃ (sample 4E) and 40Bi₂O₃·50TiO₂·10Nd₂O₃ (sample 1)

IV. Conclusions

The investigation carried out confirms that depending on the melting conditions of the super-cooled melt different poly-phase glass-ceramic materials with various microstructures could be obtained containing mainly the bismuth titanate phases in the system Bi_2O_3 -TiO₂-Nd₂O₃-SiO₂. The addition of Nd₂O₃ in the samples leads to the increase of the melting temperature and decreases the tendency to form glassy structure. It is established that all investigated samples are dielectric materials with conductivity between 10^{-9} and 10^{-13} ($\Omega \cdot cm$)⁻¹ at room temperature, dielectric permittivity in the range of 1000 to 3000 and dielectric losses tg δ between 0.0002 and 0.1. Addition of SiO₂ and Nd₂O₃ in the samples leads to essential changes of dielectric losses and conductivity.

Acknowledgements: The study was performed with financial support of UCTM, Sofia under Grant N_{\odot} 10979/2012.

References

- C. Araujo, J. Cuchiaro, L. Mc Milan, M. Scott, J. Scott, "Fatigue free-ferroelectric capacitors with platinum electrodes", *Lett. Nature*, 374 (1995) 627–629.
- B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, "Lanthanum-substituted bismuth titanate for use in non-volatile memories", *Lett. Nature*, 401 (1999) 682–684.
- S. Kojima, A. Hushur, F. Jiang, S. Hamazaki. M. Takashige, M. Jang, S. Shimada, "Crystallization of amorphous bismuth titanate", *J. Non-Cryst. Solids*, 293-295 (2001) 250–254.
- K. Sunahara, J. Yano, K. Kakegawa, "Preparation of Bi₄Ti₃O₁₂ particles by crystallization from glass", *J. Eur. Ceram. Soc.*, 26 (2006) 623–626.
- K. Gerth, Ch. Russel, "Crystallization of Bi₄Ti₃O₁₂ from glasses in the system Bi₂O₃/TiO₂/B₂O₃", *J. Non-Cryst. Solids*, **221** (1997) 10–17.
- K. Gerth, Ch. Russel, "Crystallization of Bi₃TiNbO₉ from glasses in the system Bi₂O₃/TiO₂/Nb₂O₅/B₂O₃/ SiO₂", J. Non-Cryst. Solids, 243 (1999) 52–60.

- H. Maiwa, N. Lizawa, D. Togawa, W. Sakamoto, M. Yamada, S-I. Hirano, T. Hayashi, "Electromechanical properties of Nd-doped Bi₄Ti₃O₁₂ films: A candidate for lead-free thin film piezoelectric", *J. Appl. Phys.*, A 82 [11] (2003) 1760–1762.
- G. Suyal, S.S.N. Bharadwaja, M. Cantoni, D. Damianovic, N. Setter, "Properties of chemical solution deposited polycrystalline neodymium-modified Bi-₄Ti₂O₁₂", *J. Electroceram.*, 9 (2002) 187–192.
- Q-Y. Tang, Y-M. Kan, P-L. Wang, Y-G. Li, G-J. Zhang, "Nd/V Co-doped Bi₄Ti₃O₁₂ power prepared by molten salt synthesis", *J. Am. Ceram. Soc.*, **90** [10] (2007) 3353–3356
- T. Kojima, T. Sakai, T. Watanade, H. Funakudo, "Large remanent polarization of (Bi,Nd)₄Ti₃O₁₂ epitaxial thin films grown by metalorganic chemical vapor deposition", *Appl. Phys. Lett.*, **80** [15] (2002) 2746–2748.
- J.K. Kim, S.S. Kim, W.J. Kim, "Effects of annealing conditions on the electrical properties of Bi_{4-x}Nd_x. Ti₃O₁₂ (x=0.46) thin films processed at low temperature", *J. Appl. Phys.*, A 82 (2006) 737–740.
- W. Sakamoto, M. Yamada, N. Iizawa, Y-K. Muzutani, D. Togaza, K. Kikuta, T. Yogo, T. Hayashi, S-I. Hurano, "Preparation and properties of Bi_{4-x}Nd_xTi₃O₁₂ thin films by chemical solution deposition", *J. Electroceram.*, **13** (2004) 339–343.
- D. Wu, A. Li, N. Ming, "Structure and electrical properties of of Bi_{3.15}Nd_{0.85}Ti₃O₁₂ ferroelectric thin films", *J. Appl. Phys.*, A 95 [8] (2004) 4275–4281.
- M. Chen, Z.L. Liu, Y. Wang, C.C. Wang, X.S. Yang, K.L. Yao: "Ferroelectric properties and microstructures of Nd₂O₃-doped Bi₄Ti₃O₁₂ ceramics", *Phys. Stat. Sol. A* -*Appl. Res.*, **200** (2003) 446–450.

- J.L. Pinede-Flores, E. Chavira, J. Reyes-Gasga, A.M. Gonzalez, A. Huanosta-Tera, "Synthesis and dielectric characteristics of the layered structure Bi_{4-x}R_xTi₃O₁₂ (R_x= Pr, Nd, Gd, Dy)", *J. Eur. Ceram. Soc.*, 23 (2003) 839–850.
- N.V. Giridharan, M. Subramanian, R. Jayavel, "Enhancement of polarization in bismuth titanate thin films co-modified by La and Nd for non-volatile memory application", *J. Appl. Phys.*, A 83 (2006) 123–126.
- 17. J. Li, J. Yu, G. Peng Y. Wang, W. Zhou, "Effect of TiO₂ seeding layer on crystalline orientation and ferroelectric properties of Bi_{3,15}Nd_{0.85}Ti₃O₁₂ thin films fabricated by a sol-gel method", *J. Am. Ceram. Soc.*, **90** [10] (2007) 3220–3223.
- L. Jiao, Z. Liu, G. Hu, S. Cui, S. Jin, Q. Wang, W. Wu, C. Yang, "Low-temperature fabrication and enhanced ferro- and piezoelectric properties of Bi_{3,7}Nd_{0.3}Ti₃O₁₂ films on indium tin oxide/glass substrates", *J. Am. Ceram. Soc.*, **92** [7] (2009) 1556–1559.
- S. Kunej, S. Skapin, D. Suvorov, "Phase relations in the pyrochlore-rich part of the Bi₂O₃-TiO₂-Nd₂O₃ system", J. Am. Ceram. Soc., 92 [10] (2009) 2373–2377.
- 20. M. Krapchanska, Y. Dimitriev, R. Iordanova, "Phase formation in the system Bi₂O₃-TiO₂-SiO₂", *J. Univ. Chem. Techol. Metal.*, **43** (2006) 307–310.
- E. Kashchieva, M. Krapchanska, S. Slavov, Y. Dimitriev, "Effect of synthesis route on the microstructure of SiO₂ doped bismuth titanate ceramics", *Process. Applic. Ceram.*, **3** [4] (2009) 171–175.
- 22. S. Slavov, M. Krapchanska, E. Kashchieva, Y. Dimitriev, "Electrical characteristics of bismuth titanate ceramics containing SiO₂ and Nd₂O₃", *Process. Applic. Ceram.*, **4** [1] (2010) 39–43.