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Abstract
In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures 
for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. 
In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, 
ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. 
Within this scope, in the present paper we summarize our recent results on direct synthesis of some important 
perovskites and ferrites nanopowders by wet-chemical techniques.
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I. Introduction
Considerable research effort directed to synthesis and 

characterization of electroceramic materials has been 
driven in recent years by their potential applications in 
the manufacture of a variety of microelectronic devices 
(transducers and actuators, infrared sensors, electro-op-
tic switches, nonvolatile computer memories etc.) [1–4]. 
It is well known that most properties of electroceramic 
materials change considerably when the crystalline size 
is decreased to the submicrometer regime and the com-
position is modified by doping. Thus, synthesis of stoi-
chiometric, high-purity, ultra-fine and agglomerate free 
powders with narrow size distributions is the first and 
perhaps the most important step in producing electrocer-
amics with desirable microstructure and properties. Sev-
eral wet-chemical methods are available for synthesis of 
nanosize powder, such as sol-gel synthesis, hydrothermal 
reactions, coprecipitation, molten salt preparation and 
emulsion technique. These processes are based on com-

plex solution chemistry, require little capital investment 
and enable the production of relatively large quantities 
of high purity powders of very fine particle size. Howev-
er, only techniques for the direct synthesis of crystalline 
nanoparticles are promising, as they enable elimination 
of calcination step usually responsible for considera-
bly particle coarsening and the hard agglomerate forma-
tion. Several papers based on low-temperature synthesis 
of crystalline perovskite [5–8] or ferrite [9–11] particles 
were published recently. In most of the works homo-
geneous distribution of cations on atomic scale was al-
ready maintained in solution, which enables reaction at 
relatively low temperature and formation of homogene-
ous and stoichiometric nanocrystalline particles. In the 
present paper we summarize our recent work on direct 
synthesis of some important perovskite and ferrite pow-
ders by wet-chemical techniques.

II. Perovskite nanopowders
Nanocrystalline titanate (SrTiO3, PbTiO3, La2/3TiO3, 

Bi4Ti3O12) powders were synthesized using a two-step 
process: first by controlled hydrolysis of titanium-butox-
ide (Ti(OC4H9)4, Fluka) with distilled water, and then by 
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further reaction of the formed hydrated titania gel par-
ticles with corresponding cations under different reac-
tion conditions in a strong alkaline solution (pH > 13) 
[12,13]. The synthesis was conducted first by hydrolysis 
of Ti(OC4H9)4 dissolved in anhydrous ethanol with dis-
tilled water. The obtained white titania sol was added to 
NaOH aqueous solution under vigorous stirring to pre-
cipitate the titanium hydroxide gel. Then an aqueous so-
lution containing Sr2+ (from strontium nitrate (Sr(NO3)2, 
Fluka), Pb2+ (from lead acetate (Pb(CH3COO)2×3H2O, 
Aldrich, USA), Bi3+ (form bismuth(III)-nitrate pentahy-
drate (Bi(NO3)3×5H2O, Fluka) or La3+ (from lanthanum 
nitrate (La(NO3)3×6H2O, Riedel-de-Haen) was slowly 
added to the prepared slurry, and the reaction between 
titanium hydroxide particles and corresponding ions 
was carried out at different temperatures (over a peri-
od of 60 min): i) up to 80°C at ambient pressure or ii) up 
to 165°C under the hydrothermal conditions. The pre-
cipitated powders were collected with a centrifuge and 
washed several times with distilled water to expel sodi-
um ions and then with absolute ethanol to decrease pow-

der agglomeration by removing free water and replace 
the particle surface hydroxyl with ethoxy groups. The 
washed powders were dried at 120°C for 1 day in air.
2.1 Strontium titanate powders

Direct synthesis of crystalline strontium titanate par-
ticles is based on the reaction between the hydrolyzed 
titanium alkoxide and Sr2+ ions in a highly alkaline so-
lution. In the first step, the highly porous titanium hy-
drous gel, exhibiting a fine, porous network structure 
and a very high surface area, 260 m2/g, is formed [12]. 
In the second step, the amorphous titanium hydrous gel 
is infiltrated by aqueous Sr(NO3)2 solution, and soluble 
Sr2+ ions are first attached to the surface of the porous ti-
tanium hydroxide gel and then incorporated into the gel 
structure, forming perovskite SrTiO3 phase. 

The SrTiO3 powder synthesized at 20°C has a very 
high surface area (192 m2/g) and contains only traces of 
the perovskite phase, whereas sharp peaks of the crys-
talline cubic perovskite phase are present in the SrTiO3 
powder synthesized at 80°C (Fig. 1). Both samples 
contain SrCO3, as an impurity phase, which is unavoid-
able unless great care is taken to ensure that the precur-
sors and the reaction environment are CO2-free [5,14]. 
However, the intensity of the SrCO3 peaks in the XRD 
pattern of the sample synthesized at 20°C is consider-
ably higher than for the sample synthesized at 80°C. 
This was explained [12] by the fact that at 20°C in-
corporation of Sr2+ ions into the porous gel structure is 
very slow, and they are mostly consumed in the much 
faster reaction with CO2. Thus, the powder synthesized 
at 20°C consists of an amorphous titania phase, small 
portion of SrTiO3 and considerable amount of extreme-
ly fine SrCO3 crystallites. On the other side, at higher 
synthesis temperature of 80°C the favourable process-
es are incorporation of Sr2+ ions into the titanium hy-
drous gel structure, interaction with it and formation of 
the crystalline SrTiO3 phase. As the reaction between 
Sr2+ and the titania gel is relatively fast at 80°C, only a 
part of Sr2+ ions is spent in the reaction with CO2, and 
the nanopowder with dominant perovskite phase and a 

Figure 2. HRSEM micrographs of SrTiO3 nanopowders synthesized at: a) 20°C and b) 80°C

Figure 1. XRD patterns of SrTiO3 nanopowders synthesized 
at: a) 20°C and b) 80°C (p – cubic SrTiO3, * – SrCO3)
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synthesized at 20°C consists of an amorphous titania 
phase, small portion of SrTiO3 and considerable 
amount of extremely fine SrCO3 crystallites. On the 
other side, at higher synthesis temperature of 80°C the 
favourable processes are incorporation of Sr2+ ions 
into the titanium hydrous gel structure, interaction 
with it and formation of the crystalline SrTiO3 phase. 
As the reaction between Sr2+ and the titania gel is 
relatively fast at 80°C, only a part of Sr2+ ions is spent 
in the reaction with CO2, and the nanopowder with 
dominant perovskite phase and a small amount of 
SrCO3 is formed. The powders synthesized at 20°C 
and 80°C are agglomerated (Fig. 2), with the primary 
particle size in nanometer range 32 nm and 37 nm, 
respectively. 
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small amount of SrCO3 is formed. The powders syn-
thesized at 20 and 80°C are agglomerated (Fig. 2), with 
the primary particle size in nanometer range 32 nm and 
37 nm, respectively.

2.2 Lead titanate powders
Direct synthesis of crystalline lead titanate parti-

cles is based on the reaction between the hydrolyzed 
titanium alkoxide and Pb2+ ions (from an aqueous 
Pb(CH3COO)2 solution) in a highly alkaline solution 
[12]. It is believed that the relatively soluble Pb2+ ions 
easy cover the entire surface of the porous titanium hy-
droxide gel, than slowly incorporate into the gel struc-
ture and finally form Ti-O-Pb bonds. If the reaction 
is carried out at low temperature (20 and even 80°C) 
there is not enough energy for the nucleation of PbTiO3 
phase, and the as-synthesized powders are complete-
ly XRD amorphous (Fig. 3). However, the amorphous 
structure can be directly transformed into the per-
ovskite PbTiO3 phase after calcination at around 500°C 
[12]. Both powders (synthesized at 20 and 80°C) con-
sist of very fine amorphous particles with the average 
size of about 20 nm (Fig. 4a) and have very high sur-
face areas (149 and 147 m2/g, respectively). 

Crystalline phase was directly synthesized in the re-
action of Pb2+ ions with the titanium hydrous gel at high 
temperature, i.e. under the hydrothermal conditions 
(Fig. 3). Thus, an intermediate crystalline phase was 
obtained at 135 and 150°C, whereas perovskite PbTiO3 

Figure 4. SEM micrographs of PbTiO3 powders synthesized at: a) 20°C, b) 135°C and c) 150°C

Figure 3. XRD patterns of PbTiO3 powders synthesized at 
different temperatures: 20, 80, 135, 150 and 165°C 

for 60 minutes (p – tetragonal PbTiO3, 
* – PbO-TiO2 solid solution)
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perovskite PbTiO3 phase can be also formed in the 
hydrothermal reaction conducted at 150°C, but for 

somewhat longer period of 180 minutes (Fig. 5). The 
obtained results confirm that only hydrothermal 
conditions provide enough energy, necessary not only 
for rearrangement of the titania gel structure by 
incorporating of Pb2+ ions initially adsorbed on its 
surfaces, but also for nucleation of crystalline lead 
titanate phases. 
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phase was formed at 165°C. Pure perovskite PbTiO3 
phase can be also formed in the hydrothermal reaction 
conducted at 150°C, but for somewhat longer period 
of 180 minutes (Fig. 5). The obtained results confirm 
that only hydrothermal conditions provide enough en-
ergy, necessary not only for rearrangement of the titania 
gel structure by incorporating of Pb2+ ions initially ad-
sorbed on its surfaces, but also for nucleation of crystal-
line lead titanate phases.

Depending on processing conditions as-synthesized 
powders can have different morphology, starting from 
spherical nanoparticles (Fig. 4a), to platelet-like struc-
ture (Fig. 4c) or even a complex structures involving 
titanate particles covered with one-dimensional nano-
structured elements (Fig. 4b).
2.3 Lanthanum titanate powders

La2/3TiO3 nanopowders were prepared in the reac-
tion between the hydrolyzed titanium alkoxide and La3+ 
ions in a highly alkaline solution. XRD presented in 
Fig. 6 shown that the powder synthesized at 20°C (and 
even at 80°C) consists of almost pure La(OH)3 phase. 
Formation of La(OH)3 phase is favourable even under 
the hydrothermal conditions, and at 110°C only a small 
amount of perovskite phase is obtained (indicated by 
arrows in Fig. 6). This means that, like the SrTiO3 sys-
tem, incorporation of La3+ ions in the titanium hydrous 
gel structure is impeded by the formation of an impuri-
ty phase. On the other side, different behaviour between 
strontium and lead in the process of titanate formation 
may be found in the nature of these elements, because 
Sr, an alkaline earth metal, reacts easily with CO2 and 
Sr-O bond does not possess a partial covalent character 
like Pb-O bond.
2.4 Bismuth titanate powders

Bismuth titanate powders (Bi4-xAxTi3O12, where 
A = La or Ce and x ≤ 1) were synthesized by aforemen-
tioned sol-gel process modified in a way that bismuth, 
cerium or lanthanum precursors were first dissolved in 
nitric acid and then mixed with hydrated titinia gel par-
ticles. All as-synthesized powders consist of very fine 
particles with the size in the nanometer range and with 
relatively high values of specific surface areas (~160 
m2/g). Since X-ray diffraction data revealed that as-
synthesized powders are amorphous, thermal analyses 
were performed in order to determine the crystallization 
temperature required to obtain bismuth titanate phase, 
Fig. 7. The first exothermic peak on the DTA curve at 
around 290°C can be attributed to decomposition of re-
sidual organics and nitrates. The second exothermic ef-
fect, observed around 520°C for the pure bismuth ti-
tanate powder (sample Bi4Ti3O12), can be attributed to 
crystallization of bismuth titanate [15]. After calcina-
tion at 600°C /1h a rapid drop in the specific surface 
area in the Bi4Ti3O12 powders was observed (from 160 
to 15.5 m2/g) and crystalline nanoparticles were obtai-

Figure 5. XRD patterns of PbTiO3 powders synthesized at 
150°C for 180 minutes (p – tetragonal PbTiO3)

Figure 6. XRD patterns of La2/3TiO3 powders synthesized at 
20°C and 110oC (p – La2/3TiO3, * – La(OH)3)

Figure 7. DTA curves of as-synthesized bismuth titanate 
nanopowders
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calcination at 600°C /1h a rapid drop in the specific 
surface area in the Bi4Ti3O12 powders was observed 
(from 160 to 15.5 m2/g) and crystalline nanoparticles 
were obtained. It is interesting to note that XRD peaks 
at 2  angles of ~32°, ~40° and ~58° are unseparated, 
indicating that the calcined unmodified powder has 
tetragonal structure, Fig. 8. Since tetragonal Bi4Ti3O12 
is stable only above Curie temperature, the presence of 
tetragonal structure at room temperature could be due 
to kinetics [16] and/or size effect [17]. Micrographs of 
the calcined powder (Fig. 9) confirm that powder 
consists of agglomerates of fine equiaxial-shaped 
particles, however, sinterability of the obtained 
particles are good and almost fully dense ceramics can  
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ned. It is interesting to note that XRD peaks at 2θ an-
gles of ~32°, ~40° and ~58° are unseparated, indicat-
ing that the calcined unmodified powder has tetragonal 
structure, Fig. 8. Since tetragonal Bi4Ti3O12 is stable 
only above Curie temperature, the presence of tetrago-
nal structure at room temperature could be due to kinet-
ics [16] and/or size effect [17]. Micrographs of the cal-
cined powder (Fig. 9) confirm that powder consists of 
agglomerates of fine equiaxial-shaped particles, howev-
er, sinterability of the obtained particles are good and 
almost fully dense ceramics can be processed even after 
uneasily pressing and pressure-less sintering [13].

Crystalline phase was directly synthesized in the re-
action of Bi3+ ions with the titanium hydrous gel at high 
temperature, i.e. under the hydrothermal conditions at 
160°C (Fig. 10). Since the reaction time was short, the 
characteristics XRD peaks are very broad and not de-
fined well. However, work of Xu et al. [18] showed that 
with prolonged hydrothermal reaction (for 30 or even 
50 hours) fully crystallized bismuth-titanate particles 
can be formed. This additionally confirmed that even 
the more complex perovskite structure can be directly 
synthesised by wet-chemical techniques.

III. Ferrite nanopowders
Pure zinc ferrite (ZnFe2O4) and doped zinc ferrite 

(Zn1-xInxFe2O4 and ZnYxFe2-xO4) nanoparticles were 
prepared by a low-temperature chemical co-precipita-
tion method using aqueous solutions of nitrate precur-
sors [19]. Stoichiometric amounts of Fe(NO3)3×9H2O 
(Merck) and Zn(NO3)2×6H2O (Merck) were dissolved 
in distilled water, mixed with appropriate amount of 
aqueous InCl3 or YCl3 solution and precipitated with a 
hydroxide solution (NH4OH or NaOH). The co-precipi-
tation reaction was carried out at different temperatures 
up to 95°C for 60 minutes under continuous stirring. 
The precipitates were separated from the slurry by cen-
trifuging and washed a number of times with distilled 
water and then with absolute ethanol. The formed nano-
particles were dried at 120ºC for 1 day and finally dry 
milled in a mortar.
3.1 Zinc ferrite nanoparticles

The zinc-ferrite powders, synthesized at 20°C and 
60°C with NH4OH, are amorphous (Fig. 11) and crys-
tallize after calcination at temperature between 550 and 
600°C. However, both powders calcined at 600°C consist 
of mixture of the spinel ZnFe2O4 phase and the pure ox-
ide phases. If the precipitation was carried out in presence 
of NaOH at 20°C the obtained powder is also amorphous 
(Fig. 11) confirming that the direct synthesis of crystal-
line ZnFe2O4 particles is not possible in the presence of 
NH4OH or at room temperature. On the other hand, in 
presence of NaOH, crystalline powders, having the aver-
age crystallite size of about 3–4 nm, can be directly syn-
thesized at 80°C (Fig. 11). Corresponding HRTEM im-

Figure 8. XRD patterns of wet-chemically synthesized 
Bi4Ti3O12 nanopowders (p – Bi4Ti3O12)

Figure 9. SEM micrographs of Bi4Ti3O12 nanopowder

Figure 10. XRD patterns of hydrothermally synthesized  
Bi4Ti3O12 powders
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powder is also amorphous (Fig. 11) confirming that 
the direct synthesis of crystalline ZnFe2O4 particle is 
not possible in the presence of NH4OH or at room 
temperature. On the other hand, in presence of NaOH, 
crystalline powders, having the average crystallite size 
of about 3-4 nm, can be directly synthesized at 80°C 
(Fig. 11). Corresponding HRTEM image (Fig. 12) 
implies that as-synthesized particles are uniform in 
size, well crystallized and agglomerated. With the 
increase of synthesis temperature to 95°C the single-
phase cubic spinel phase is formed too, but the 
corresponding peaks are more sharp and narrow.  

The lattice parameter of the as-prepared ZnFe2O4 
nanoparticles (in presence of NaOH and at 80°C) is 
found to be a larger than the bulk zinc ferrite value 
[20], suggesting that they have a different crystal 
structure in terms of the distribution of the constituent 
cations over two lattice sites of the spinel structure 
compared to the bulk material [21]. These structural  
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age (Fig. 12) implies that as-synthesized particles are 
uniform in size, well crystallized and agglomerated. With 
the increase of synthesis temperature to 95°C the single 
cubic spinel type is formed too, but the corresponding 
peaks are more sharp and narrow. 
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design of the magnetic ceramics with significantly im-
proved properties compared to the bulk-counterparts.
3.2 Doped zinc-ferrite nanoparticles
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structure using the same one-step coprecipitation route. 
The results of X-ray analyses confirmed the nanosized 
nature and spinel type structure of the investigated sam-
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ferrites. Addition of yttrium causes an increase of crys-
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the broadening of the XRD peaks, leading to decrease of 
crystallite size, Fig. 15. The reason for this is likely to be 
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highly crystalline zinc ferrite nanopowders. On the other 
hand, indium inhibits the phase transformation, resulting 
in a small crystallinity of zinc ferrite nanopowders doped 
with indium. However, what is interesting to note is that 
the addition of indium and yttrium has a positive effect 
on the particle size distribution, making it more uniform, 
as confirmed by TEM results shown in Fig. 16.

Raman and Mössbauer spectroscopy studies carried 
out on the indium- and yttrium-zinc ferrite nanoparti-
cles implied on the possible cation distribution between 
the tetrahedral and octahedral sites and formation of 
the partially inversed spinel. The study of the magnetic 
properties showed that hysteresis loops do not saturate 
even in the presence of high magnetic fields, which con-
firmed the superparamagnetic and single domain nature 
of samples. These observations imply that, besides the 
particle size, composition (e.g. addition of yttrium and 

indium) causes significant structural rearrangements 
which in turn induce changes in magnetic behavior of 
the investigated nanoparticulate systems.

IV. Conclusions
Nanocrystalline ceramic powders have been pre-

pared by using chemical synthesis routes under spe-
cific conditions. Our research showed that direct syn-
thesis is promising concept in producing very high 
purity, high-quality and high surface area nanopowders 
without further calcination steps. Nanoceramic pow-
ders – single phase or two phase mixtures of SrTiO3,  
PbTiO3, La2/3TiO3, Bi4Ti3O12, ZnFe2O4, Zn1-xInxFe2O4 and 
ZnYxFe2-xO4 – with a wide range of powder properties 
for various targeted applications can be synthesized by 
varying: temperature, reaction time, pH, purity, dopant 
type and dopant concentration. The examples show the 

Figure 14. XRD patterns of Zn1-xInxFe2O4 nanoparticles 
(s – spinel ferrite, * - In(OH)3) 

Figure 15. XRD patterns of ZnYxFe2-xO4 nanoparticles
 (s – spinel ferrite)

Figure 16. TEM images of: a) Zn0.85In0.15Fe2O4 and b) ZnY0.15Fe1.85O4 nanoparticles
a) b)
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ZnFe2O4, Zn1-xInxFe2O4 and ZnYxFe2-xO4 – with a 
wide range of powder properties for various targeted 
applications can be synthesized by varying: 
temperature, pH, purity, dopant type and dopant 
concentration, single phase or two phase mixtures. The 
examples show the usefulness of the chemical 
nanoparticle approach for advanced materials 
fabrication and the high potential of these materials for 
variety of applications. 
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usefulness of the chemical nanoparticle approach for ad-
vanced materials fabrication and the high potential of 
these materials for variety of applications.
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