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Abstract
Ferroelectric PbTiO3 nanostructures have been fabricated using two different procedures that involve micro-
emulsions and Chemical Solution Deposition onto Pt/TiO2/SiO2/(100)Si substrates. The first procedure enables 
the fabrication of structures with controlled size and shape, as observed by Atomic Force Microscopy (AFM) 
topography and computer assisted quantitative analysis, while the second procedure, in addition, yields very 
small (≈ 20 nm) isolated, ferroelectric nanoislands.  The ferroelectric character of the nanostructures is dem-
onstrated using Piezoelectric Force Microscopy (PFM). The ferroelectric properties depend on the height of 
the nanostructures, showing a strong pinning layer effect for the smaller ones, revealed by the asymmetry of 
the piezoelectric hysteresis loops.
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I. Introduction
Recently, significant effort has been directed into the 

development of ultra-high density non-volatile ferro-
electric random access memories (NV Fe-RAMs) based 
on ordered arrays of ferroelectric nanostructures [1–3]. 

This approach requires the fabrication of an array 
of ferroelectric nanostructures of equal size and shape 
onto the substrate. The methods described in the litera-
ture to obtain such structures can be divided into the so-
called top-down methods (based on etching a thin or ul-
trathin film) [3] and the bottom-up approaches (based 
on building up the structures from the bottom) [2].

If surfactant molecules are added to an emulsion 
(mixture of two immiscible liquids), they try to orga-
nize in order to minimize the chemical potential, stabi-
lizing the groups of one of the phases in the other and 
preventing them from reverting into two different lay-

ers [4]. Emulsions are usually described as water-in-oil 
and oil-in-water type or direct and inverse emulsions, 
respectively, depending on which is the continuous me-
dium. The shape and size of the colloidal aggregates de-
pend on the type of surfactant and the nature and rela-
tive quantity of the two phases present in the emulsion. 
One of these possible assemblies are micelles. Micelles 
are a grouping of surfactant molecules where either the 
hydrophobic (in a polar continuous phase) or the hydro-
philic (in a non-polar continuous phase) ends cluster in-
ward to escape the continuous phase, keeping one of the 
liquids of the emulsion inside. If the heads from the in-
side of the aggregate, then it is called an inverse micelle 
and in the opposite case, it is called a direct micelle. Mi-
celles are formed by the core, a liquid pool inside, and 
the shell, formed by the surfactant.

The microemulsion formed by reverse micelles can 
include at the pool not only water but nanodrops of a 
different nature [5–7]. In this case, the micelles also 
play the role of nanoreactors and the mixture formed 
is called a micellar solution. Controlling the amount of 
water to surfactant involved, it is possible to control the 
micelle size and, consequently, the nanoparticle size. 
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Although the microemulsion method is a well-known 
procedure for the preparation of nanopowders [5–7], it 
has been rarely used in the case of ferroelectrics grown 
on substrates, whether in thin film form [8–10] or isolat-
ed nanostructures [11].

Chemical Solution Deposition (CSD) techniques 
provide a good stoichiometry control at relatively low-
cost for the fabrication of ferroelectric perovskite oxide 
thin films [12]. And so, the procedures here described 
involve both microemulsions and CSD.

Nanostructures present the challenge of measuring 
and characterizing systems that are below the limit of 
the resolution of conventional microelectronics technol-
ogy. Scanning Probe Microscopies (SPMs) are a group 
of techniques that enable the characterization of nano-
ferroelectric materials at a local scale. By PFM, the so 
called size limit of ferroelectricity was determined to be 
20 nm [13] as it was found as the size from which a ferro-
piezoresponse could not be measured by this technique.  
However, PFM depends not only on the electromechani-
cal response of the nanostructures, but also on the entire 
measurement device and sample system, including the 
type of cantilever used, its mechanical characteristic and 
the interface between sample and substrate [14]. 

Here, we present the SPM characterization of ferro-
electric nanoparticles, prepared by two microemulsion 
assisted methods, onto polycrystalline Pt/TiO2/SiO2/
(100)Si substrates.

II. Experimental
Microemulsions, sol and micellar solutions are pre-

pared as described elsewhere [15,16]. Deposition of 
the microemulsions and the micellar solutions onto the  
Pt/TiO2/SiO2/(100)Si substrates was carried out by spin-
coating at 2000 rpm for 45 s, following two different 
procedures: the first one was to coat the substrates with 
the micellar solutions. Drying and crystallization was 
made according to the procedure described elsewhere 
[15]. This is denoted process A. The second proce-
dure consists of the spin-coating of the microemulsion 
and, onto this emulsion layer; the micellar solution was 
spun-coated, dried and crystallized in the same condi-
tions used for process A. This is denoted process B.

A commercial Scanning Force Microscopy (SFM) 
by Nanotec was used to study the surface topography of 
the PbTiO3 nanostructures. The tips used for topograph-
ic measurements (Atomic Force Microscopy, AFM) 
were Si cantilevers (force constant 42 N/m, resonance 
frequency 320 kHz). 

All SEM investigations were performed with a JEOL 
7500F scanning electron microscope operated at 3 kV on 
the samples, without using any conductive coating layer.

Particle size distributions were calculated using MIP 
software by Digital Image Systems from AFM and SEM 
images. Here the size of the nanostructures can be well 
defined by the equivalent diameter to their circular shape, 
since they have more or less the same dimensions in all 

Figure 1. AFM images of the particles prepared by procedure A (a-b), and their corresponding size distribution
and probabilistic plot (c)

a)

b)
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Figure 1. AFM images of the particles prepared by procedure A (a-b), and their corresponding size distribution 
and probabilistic plot (c) 
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directions. To calculate the average value of the measured 
distributions of equivalent diameter, <Deq>, and their 
standard deviation, σDeq, the fitting of the line obtained 
at the probability plot of such distribution was used [17]. 

For local piezoelectric activity measurements  
(Piezoresponse Force Microscopy, PFM), two kinds of 
probes were used, both Pt/Ir coated Si cantilevers (force 
constant 42 N/m and 5 N/m, resonance frequency 320 
kHz and 65 kHz, respectively). Out-of-field or hyster-
esis loops were measured. They are obtained when in-
ducing piezoelectric vibration in the nanostructures un-
der increasing and decreasing (DC) voltage, measuring 
when the field is driven back to zero [18].

III. Results
Fig. 1a,b show AFM topography images of the iso-

lated nanostructures obtained by procedure A. The 
nanostructures have a homogeneous size and shape as 
demonstrated by the size distribution plotted in Fig. 1c. 
However, these structures seem to be formed by agglom-
eration of smaller particles because they are not perfect-
ly rounded but show some smaller distortion. The size 
distribution of the nanoislands is a single Gaussian dis-
tribution with an average equivalent diameter, <Deq>, 
of 67 nm and a standard deviation, σDeq, of 18 nm. The 
height of the particles is estimated as 20 nm from AFM 
topography line scans.

Figure 2. AFM images of the particles prepared by procedure B (a-b), and the size distribution of the isolated particles and 
probabilistic plot (c). The corresponding SEM image (d) and the size distribution of the aggregates

and their probabilistic plot (e)

a)
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Figure 2. AFM images of the particles prepared by procedure B (a-b), and the size distribution of the isolated particles and 

probabilistic plot (c). The corresponding SEM image (d) and the size distribution of the aggregates 
and their probabilistic plot (e) 
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In the case of the nanostructures prepared by the pro-
cedure B, AFM images (Fig. 2a,b) show rounded small 
isolated particles and larger structures formed by the ag-
glomeration of the smaller ones. The size distribution is 
also a single Gaussian one, characterized by an average 
size, <Deq>, of 21 nm and a standard deviation, σDeq, of 
4 nm. Height of the particles is estimated as 6 nm from 
line scans of the AFM images.

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of  
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, σDeq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e. 

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hystere-
sis loops by PFM as well as by the obtained PFM im-
ages of phase and amplitude. Fig. 3b,c shows the  
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the piezoresponse 
of those prepared by method B, which topography im-
age is shown in Fig. 3d.

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a hystere-

sis loop corresponding to a nanoparticle of ~ 36 nm of 
diameter prepared by procedure B.

IV. Discussion
Procedure A results into nanostructures with a nar-

row distribution of size and homogeneous shape. It is 
assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before the 
crystallization. However, when we compare nanoparti-
cles from the same micellar solution and processed by 
methods A and B, we can see that process B leads to 
smaller particles. We can understand these as the result 
of defects that the polycrystalline Pt substrate presents 
(roughness ± 17 nm with some pores present), and be-
cause of this, the deposited micelles in process A tend to 
concentrate in those points, leading to a slight agglom-
eration of the primary nanoparticles after the thermal 
treatment, when all the surfactant is eliminated. This can 
be observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show an 
imperfect spherical shape that would correspond to the 
merged primary particles.

Therefore, nanostructures prepared by procedure A 
are agglomerated themselves as explained before. Their 
average size is similar to the one of the bright spots at 
the SEM image in Fig. 2d. We can think that these spots 

Figure 3. PFM images of phase and amplitude and their corresponding topography images of particles obtained by
procedure A (a-d) and procedure B (e-f)

a)

d)
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
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primary nanoparticles after the thermal treatment, 
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observed at the high magnification image (Fig. 1b), 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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agglomeration of smaller particles because they are not 
perfectly rounded but show some smaller distortion. 
The size distribution of the nanoislands is a single 
Gaussian distribution with an average equivalent 
diameter, <Deq>, of 67 nm and a standard deviation, 

Deq, of 18 nm. The height of the particles is estimated 
as 20 nm from AFM topography line scans. 

In the case of the nanostructures prepared by the 
procedure B, AFM images (Fig. 2a,b) show rounded 
small isolated particles and larger structures formed by 
the agglomeration of the smaller ones. The size 
distribution is also a single Gaussian one, 
characterized by an average size, <Deq>, of 21 nm and 
a standard deviation, Deq, of 4 nm. Height of the 
particles is estimated as 6 nm from line scans of the 
AFM images. 

The SEM image (Fig. 2d) of the same sample at 
smaller magnification shows bright spots. The size 
distribution of these spots is a bimodal distribution of 
average sizes, <Deq>, 65 nm and 92 nm and standard 
deviations, Deq, of 28 nm and 41 nm, respectively, as 
shown in Fig. 2e.  

The ferroelectric response of these nanostructures 
was proved by measuring local piezoelectric hysteresis 
loops by PFM as well as by the obtained PFM images 
of phase and amplitude. Fig. 3b,c shows the 
piezoresponse images of some isolated nanostructures 
prepared by procedure A, which topography image is 
shown in Fig. 3a. Fig. 3e,f represents the 

piezoresponse of those prepared by method B, which 
topography image is shown in Fig. 3d. 

Fig. 4a shows the plot of an out-of-field hysteresis 
loop of an isolated nanoparticle of ~ 83 nm of lateral 
size prepared by procedure A. Fig. 4b shows a 
hysteresis loop corresponding to a nanoparticle of ~ 36 
nm of diameter prepared by procedure B. 

 

VI. Discussion 

Procedure A results into nanostructures with a 
narrow distribution of size and homogeneous shape. It 
is assumed that the micelles are acting as nanoreactors, 
preventing nanoparticles from agglomerating before 
the crystallization. However, when we compare 
nanoparticles from the same micellar solution and 
processed by methods A and B, we can see that 
process B leads to smaller particles. We can 
understand these as the result of defects that the 
polycrystalline Pt substrate presents (roughness ± 17 
nm with some pores present), and because of this, the 
deposited micelles in process A tend to concentrate in 
those points, leading to a slight agglomeration of the 
primary nanoparticles after the thermal treatment, 
when all the surfactant is eliminated. This can be 
observed at the high magnification image (Fig. 1b), 
where some of the A processed nanostructures show 
an imperfect spherical shape that would correspond to 
the merged primary particles. 
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are the agglomerates that can be seen at the AFM im-
ages (Fig. 2a,b) corresponding to the sample prepared 
by procedure B. Thus, some primary particles still ag-
glomerate, as in process A, even in larger agglomerates. 
However, we observe that this effect is partially elimi-
nated when the substrate is pre-treated with a microe-
mulsion layer in process B, resulting into a smoother 
substrate surface. This can be easily observed by com-
paring AFM images taken at the same magnification 
and shown in Fig. 1b and Fig. 2a.

The microemulsion layer used provides a function-
alized surface onto which the micellar solution is more 
uniformly deposited. Thus, the agglomeration of the 
nanoparticles is minimized. This procedure is a well-
known one for polymer films or ultrathin films [19] and, 
to the best of our knowledge, it is the first time that is 
used in combination with microemulsion mediated syn-
thesis, applied to ferroelectric oxides.

In addition, the ferro-piezoelectric responses that 
particles prepared by both methods are different. In 
contrast to nanostructures prepared by procedure A, 
where the hysteresis loop is symmetric with respect to 
the piezoresponse and electric voltage axis, nanoparti-
cles prepared by procedure B are not. Asymmetry with 
respect to electric voltage axis effect is well-known 
as imprint phenomena taking place in most thin films 
[20]. In ferroelectric nanoparticles of ~100 nm, asym-
metry with respect to piezoresponse axis was previ-
ously found [14] and attributed to a pinned layer at 
the bottom part of the nanostructure that clamps the 
switching of the polarization. The nature of the pinned 
layer is unknown, but most probably related with cer-
tain crystal structure defects occurring at the interface 
between the substrate and the ferroelectric particle. 
When the field is established in the same direction as 
the pinned polarization, its contribution adds to that 
switched by the field, whereas when the field is applied 
in the opposite polarity, this contribution is subtract-
ed from the switched one, giving place to the asym-

metry of the loop. This effect is not observed for the 
sample prepared by procedure A. One could think that 
the pinning layer effect is increased when decreasing 
the nanostructures size. Since this layer is an intrinsic 
characteristic of the interface between nanostructure 
and substrate, its effect is proportional to the ratio be-
tween interface volume, of some few unit cells height, 
and whole volume of the nanoparticle. Consequently, 
it should be larger in nanostructures from procedure B, 
smaller in lateral size, but also in height (6 nm) com-
pared with the height of nanostructures from proce-
dure A (20 nm).

V. Conclusions
Isolated single particles of PbTiO3 are prepared by 

two different methods that involve microemulsion me-
diated synthesis and Chemical Solution Deposition 
onto Pt/TiO2/SiO2/(100)Si substrates. These procedures 
results in nanostructures with a controlled shape and 
size. Nanoparticles fabricated by both procedures have 
a Gaussian distribution of their size with an average val-
ue of 21 nm – primary particles in procedure B - and 67 
nm – in procedure A - and a narrow distribution of size. 
In addition, procedure B is proved as an effective way 
of controlling deagglomeration of the nanostructures. 
Their ferro-piezoelectric behavior had been proved by 
PFM, showing different ferroelectric behavior depend-
ing on the height of the nanostructures: smaller ones 
show a strong pinning of the layer corresponding to the 
interface between the nanostructure and the substrate.
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Figure 4. Out-of-field hysteresis loops obtained by PFM on isolated nanoparticles fabricated by
procedure A (a) and procedure B (b)
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