
13

Processing and Application of Ceramics  3 [1-2] (2009) 13–17

* Corresponding author: tel: +420 54 114 33 44
fax: +420 54 114 32 02, e-mail: maca@fme.vutbr.cz

Microstructure evolution during pressureless sintering of 
bulk oxide ceramics
Karel Maca*

Department of Ceramics and Polymers, Brno University of Technology, Technicka 2, 
616 69 Brno, Czech Republic
Received 16 October 2008; received in revised form 9 January 2009; accepted 17 February 2009

Abstract
The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on 
the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium ti-
tanate, as well as tetragonal (3 mol% Y2O3) and cubic (8 mol% Y2O3) zirconia were cold isostatically pressed 
or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate 
of Heating with different dwell temperatures (CRH), with Rate-Controlled Sintering (RCS) and with Two-Step 
Sintering (TSS). It was examined whether some of these three sintering schedules, with the same fi nal density 
achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and 
only for selected materials) brought signifi cant decrease of the grain size.

Keywords: alumina, zirconia, ceria, strontium titanate, constant-rate of heating, rate-controlled sintering, 
two-step sintering

I. Introduction
The most frequent goal in the sintering of ad-

vanced ceramic materials is to obtain a material with 
high relative density and homogeneous microstruc-
ture consisting of small grains. In the case of con-
ventional pressureless sintering, no general opinion 
can yet be found in literature as to whether the fi nal 
grain size of an individual body of defi ned fi nal den-
sity can also be infl uenced by the choice of sintering 
regimes. Based on theoretical models of sintering, it 
has been suggest ed that the fi nal density defi nitely 
determines the grain size of the sintered bodies [1–5]. 
On the other hand, there are also reports that have 
demonstrated that refi ned microstructures can be ob-
tained by correct choose of the sintering cycle. This 
paper describes author’s experience concerning the 
infl uence of the choice of three different pressureless 
heating schedules on the fi nal microstructure of ox-
ide ceramic materials. 

Constant-Rate of Heating (CRH in the following 
text) is the most frequently used heating profi le in the 
sintering technology. It consists of heating the sample at 

a constant heating rate up to the sintering temperatu re, 
at which a dwell time can be inserted [6]. The aim of the 
fi rst part of this paper was to examine whether sintering 
of zirconia ceramics for a shorter period at a higher tem-
perature results in a different fi nal grain size than sinter-
ing for a longer period at a lower temperatu re while the 
same fi nal density is obtained.

In the 1970s, so-called Rate-Controlled Sintering 
method (RCS) was developed at the North Carolina 
State University [7–10]. With this method, the shrin-
kage rate is being reduced in the open-porosity phase, 
which should lead to sintered bodies with a more ho-
mogeneous structure and smaller grains than in the case 
of CRH method. In the second part of the paper, the 
method of RCS and the method of CRH with opti mized 
holding time were used, and the microstructures of the 
zirconia, alumina and ceria bodies obtained by the two 
methods were compared.

The method of Two-Step Sintering (TSS) was fi rst 
published by Chen and Wang [11] and presently this 
method is widely used for sintering of different kind of 
ceramic materials [12–17]. In this method the sample 
is heated to a higher temperature to achieve a density 
higher than 75% of theoretical sample density (where 
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the supercritical pores are removed from the sintered 
body), then quickly cooled down and held at a lower 
temperature until its full densifi cation (without addi-
tional grain growth). The third part of the paper shows 
the results of TSS of ceramic materials with tetragonal 
(ZrO2 + 3 mol% Y2O3), hexagonal (Al2O3) and cubic 
(SrTiO3, ZrO2 + 8 mol% Y2O3) structure and compares 
them with CRH experiments.

II. Experimental

Materials
Commercially available powders with particle size 

(established by BET method) ranging from 50 to 370 
nm were used. Details of the used powders are given 
in Table 1.
Preparation of ceramic green bodies

The above ceramic powder materials were sha ped 
into disks (dia 30 mm, height 5 mm) via cold isostat-
ic pressing (CIP - Autoclave Engineering, Inc., USA) 
and cylinders (dia 5.9 mm, height 60 mm) via injection 
moulding (IM - Allrounder injection press, Germany). 
Green bodies were pre-sintered at 800°C/1h and then 
cut and ground into prisms.
Sintering by CRH

Tetragonal zirconia ceramics (Z3Y shaped by CIP 
and Z3YS shaped by IM) were used for CRH exper-
iments (see Table 1). The specimens were fi rst sin-
tered in a high-temperature dilatometer (L70/1700, 
Linseis, Germany) with vertical specimen orienta-
tion. The temperature was increased at a rate of 10°C/
min up to a temperature of 800°C and then at a rate 
of 5˚C/min up to the fi nal sintering temperature, at 
which the isothermal holding time followed. For each 
type of specimen, three different sintering tempera-
tures were chosen such that fi nal relative densities 
of 98% of theoretical sample density (t.d. in the fol-
lowing text) and higher were obtained. For the Z3Y-
CIP specimens these temperatures were 1400°C, 
1450°C and 1500°C while for the Z3YS-IM speci-
mens they were 1450°C, 1500°C and 1530°C. Densi-
fi cation curves ρrel(t,T) were calculated from dilatom-
eter shrinkage data [18] and further used to establish 
concrete fi ring schedules leading to identical densi-

ties of specimens sintered at different temperatures 
and holding times. Firing in these schedules was then 
performed in a standard resistance (superkanthal) 
furnace (K 1700/1, Heraeus, Germany).
Sintering by RCS

RCS experiments were performed with REY, CE 
and Z3YS samples (see Table 1) prepared by injection 
moulding. Sintering by the RCS method was perfor-
med strictly following the three-stage model [9], where 
up to 75% t.d. the rate of densifi cation was 0.4% t.d./
min, then to 85% t.d. it was 0.13% t.d./min and after 
that the rate of sintering fell linearly with time (propor-
tionality constant –3.3.10-4% t.d./min2). These experi-
ments were performed in high-temperatu re dilatome-
ter (L70/1700, Linseis, Germany) equipped by special 
RCS software.
Sintering by TSS

The Two-Step Sintering of isostatically pressed TAI, 
REY, Z3Y and Z8YS ceramics was performed in a su-
perkanthal resistance furnace (K 1700/1, Heraeus, Ger-
many) in air atmosphere. According to the data from 
the literature [11] temperatures higher than those guar-
anteeing a relative density of 75% t.d. were chosen for 
the fi rst sintering step. Several combina tions of temper-
atures of the fi rst sintering step (T1) and the second sin-
tering step (T2) were tested for each material. The dwell 
times at the T2 were between 0 and 20 hours. Sintering 
proceeded at a heating rate of 10°C/min up to a temper-
ature of 800°C, and at 5°C/min up to a temperature of 
the fi rst sintering step. The temperature decrease from 
the fi rst to the second sintering step proceeded at a rate 
of 60°C/min.
Study of microstructure of sintered samples

The fi nal relative densities of samples were deter-
mined on the basis of Archimedes’ principle with dis-
tilled water (EN 623-2). The samples were ground 
and polished and then thermally etched to expose the 
grain boundaries. Etching temperatures was 50°C be-
low the sintering temperature, etching time was 5 min-
utes. The microstructure of samples was studied us-
ing scanning electron microscopy (Philips XL30, the 
Netherlands). The grain size was estimated by the lin-
ear intercept method (EN 623-3). For each sample, at 

Powder Producer Grade Abbr. D
[nm]

Sintering 
method

Al2O3 Taimei Chemicals, Japan Taimicron TM-DAR TAI 100 TSS
Al2O3 Malakoff Industries, USA ReynoldsRC-HP DBM REY 240 RCS, TSS
CeO2 Guangzhou Zhuijang Ref., China CE 370 RCS

SrTiO3 Sigma-Aldrich, Germany 467634 ST 50 TSS
ZrO2 (+3 mol% Y2O3) Tosoh Corporation, Japan TZ-3YB Z3Y 60 CRH, TSS 
ZrO2 (+3 mol% Y2O3) Tosoh Corporation, Japan TZ-3YS Z3YS 140 CRH, RCS
ZrO2 (+8 mol% Y2O3) Tosoh Corporation, Japan TZ-8YSB Z8YS 140 TSS

Table 1 Specifi cation of ceramic powders used
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least three photographs of the microstructure were tak-
en; in each microphotograph a minimum of fi ve line 
segments were assessed.

III. Results and discussion

Sintering with constant rate of heating and different 
dwell temperatures and times

Via controlled sintering of cold isostatically pressed 
(Z3Y) and injection moulded (Z3YS) zirconia powders 
the same fi nal specimen densities were obtained by dif-
ferent sintering schedules (a longer holding time at a 
lower temperature or a shorter holding time at a higher 
temperature during CRH experiments).

In case of zirconia Z3Y powder shaped by CIP 
the density of cca 99.5% t.d. was reached by sinter-
ing at three different sintering temperatures and times 
(1400°C/ 35 min, 1450°C/ 8 min, and 1500°C/ 1 min). 
As can be seen in Fig. 1a, the grain size of all three 
samples was almost identical – 170 nm. Higher fi -
nal density (99.9% t.d.) was achieved after sinter-
ing at the same sintering temperatures but for longer 
times (1400°C/ 94 min, 1450°C/ 43 min, and 1500°C/ 
34 min). Also in this case the grain size of all three sam-
ples was nearly the same – 200 nm. 

Similar results were obtained with Z3YS powder 
(with larger particles than Z3Y) shaped by injection 
moulding. Due to different particle size and different 
shaping technology, the microstructure of the green 
body was expected to be different from the Z3Y sam-
ple. This led to slightly lower fi nal densities of Z3YS 
samples – a density of 99.0% t.d. was reached af-
ter sintering at 1450°C/ 177 min, 1500°C/ 45min and 
1530°C/ 20 min and the fi nal density of 99.8% t.d. af-
ter sintering at 1500°C/ 163 min and 1530°C/ 90 min. 
Again, at the same fi nal density also the grain size 
was the same (260 nm at 99.0% t.d or 350 nm at 
99.8% t.d.), irrespective of the sintering schedule 
(see Fig. 1b).

While examining the microstructure of sintered 
specimens, it was proved statistically that the choice 
of CRH sintering schedule did not have any effect 
on the grain size of sintered material, which means 
that for a given specimen (characterized by the mi-
crostructure of ceramic green body, i.e. by the distri-
bution of particle and pore sizes) the grain size was a 
function of specimen density irrespective of the CRH 
temperature mode with which this density had been 
obtained [6].

Figure 1. Mean grain size of specimens sintered with different CRH temperature modes a) Z3Y – CIP, b) Z3YS – IM

Figure 2. The dependence of relative alumina (REY)
density and temperature on time during RCS

and CRH sintering
Figure 3. Mean grain size of REY, Z3YS and CE ceramics 

sintered by means of RCS and CRH methods

G
ra

in
 s

iz
e 

(n
m

)

0

100

200

300
14

00
°C

/3
5m

in

a) Z3Y - CIP

15
00

°C
/1

m
in

14
50

°C
/8

m
in

14
00

°C
/9

4m
in

14
50

°C
/4

3m
in

         99.5%t.d.                                99.9%t.d.

15
00

°C
/3

4m
in

b)a)

t [min]

100 150 200 250 300 350

ρ re
l [

%
]

60

68

76

84

92

100

T 
[°C

]

600

800

1000

1200

1400

1600

ρrel (CRH)

ρrel (RCS)

T (RCS)

Al2O3 - RCS

Al2O3 - CRH

T (CRH)

  REY 99.3%t.d.     Z3YS 99.1%t.d.    CE 99.5%t.d.

G
ra

in
 s

iz
e 

(n
m

)

0

500

1000

1500

2000

2500

3000

3500

RCS 
CRH 

G
ra

in
 s

iz
e 

(n
m

)

0

200

400

600

14
50

°C
/1

77
m

in

b) Z3YS - IM

15
30

°C
/2

0m
in

15
00

°C
/4

5m
in

15
00

°C
/1

63
m

in

15
30

°C
/9

0m
in

A            99.0%t.d.                                99.8%t.d.



16

K. Maca / Processing and Application of Ceramics 3 [1-2] (2009) 13–17

Rate-Controlled Sintering
Alumina (REY), tetragonal zirconia (Z3YS) and ce-

ria (CE) samples prepared by injection moulding were 
used for sintering by means of RCS method. The mi-
crostructures obtained by RCS were compared with that 
obtained by optimized CRH sintering of these samples. 
The typical course of the RCS is demon strated for alu-
mina ceramics in Fig. 2. In the RCS method the sample 
densifi cation rate in the open porosity phase (ρrel < 90%) 
was lower than in the CRH method. This should prevent 
separation of pores from grain boundaries, and thus also 
infl uence the micro structure development towards high-
er homogeneity and smaller grain size [7–9].

It is evident from Fig. 2 that the same fi nal density of 
alumina (REY) ceramics (99.3% t.d.) was obtained by 
RCS and CRH sintering schedules. Due to proper optimi-
zation of CRH cycles the same fi nal densities after RCS 
and CRH cycles were reached also for zirconia (Z3YS) ce-
ramics (99.1% t.d.) and ceria (CE) ceramics (99.5% t.d.). It 
can be seen from Fig. 3 that the grain size of samples sin-
tered by RCS and CRH was nearly the same for alumi-
na (1150 nm) and zirconia (370 nm), or within the stan-
dard deviation of grain size evaluation for ceria ceramics 
(2760 nm after RCS, or 2960 nm after CRH).

By sintering samples prepared from three different 
materials, it was possible to prove that RCS method did 
not lead to microstructures with a smaller mean size of 
grains than in the case of the optimized sintering cycle 
with CRH.
Two-Step Sintering

The method of Two-Step Sintering was applied to 
isostatically pressed tetragonal zirconia (Z3Y), hexa-
gonal alumina (REY, TAI) cubic zirconia (Z8YS) and 
strontium titanate (ST) ceramics. Details on temperatu-
res of the fi rst and second sintering steps as well as 
dwell times at the second sintering step are given else-
where [19,20].

As it can be seen from Fig. 4 the TSS method was 
applied with great benefi t to cubic zirconia ceramics 
(Z8YS, see Fig 5) and also to cubic strontium titanate 
ceramics (ST). The effect of the TSS method on refi n-
ing the microstructure of tetragonal zirconia (Z3Y) and 
hexagonal alumina ceramics (REY, TAI) was only with-
in the standard deviation of grain size evaluation. 

At the moment we do not have any explanation of 
this phenomenon. Further experiments are necessary to 
clarify if it is caused by differences in values of activa-
tion energy of sintering and grain growth or by crystal 
structure or by some other effect.

IV. Conclusions
The infl uence of the choice of pressureless heating 

schedule on the fi nal microstructure of various oxide 
ceramic materials is summarized in the paper. It was 
found that the method of Two-Step Sintering was ef-
fective in refi ning the microstructure of cubic zirco nia 
ceramics and cubic strontium titanate ceramics. On the 
other hand, the positive infl uence of Two-Step Sintering 
method on decreasing of grain size of tetragonal zirco-
nia and hexagonal alumina ceramics was not statistical-
ly proved. Similarly, an optimization of the dwell tem-
perature and time during Constant-Rate of Heating as 
well as Rate-Controlled Sintering of tetragonal zirco-
nia, alumina and ceria ceramics did not lead to any re-
markable decrease in their grain size.
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