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Abstract
Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behav-
iour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was 
evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis 
before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench 
tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values 
of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and 
correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic 
fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock 
experiments.
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I. Introduction
Ceramic materials have high thermal resistance and 

are very hard and resistant to compressive load. The 
most important properties usually determined for re-
fractories are refractoriness, working temperature and 
thermal stability. Thermal shock resistance of refracto-
ry materials is one of the most important characteristics 
since it determines their performance in many applica-
tions. Thermal shock introduces cracks into the struc-
ture and therefore there is need to improve cracking re-
sistance of material.

In fibre reinforced composites, strong and stiff fi-
bres are usually embedded into a ductile matrix with 
the aim of enhancing mechanical properties, main-
ly strength, strength-to-weight ratio, etc. Under load, 
the matrix transmits the force to the fibres, which car-
ry the most of applied load. Fibre incorporation can 
have a benefit even in a brittle matrix, and then the 
toughness of matrix can be enhanced. The geome-

try and arrangements of fibres are also important in 
controlling the mechanical properties of a fibre rein-
forced composite.

Ultrasonic pulse velocity testing on refractory 
materials was first used in late 1950s. Young’s mod-
ulus of representative samples is often calculated us-
ing measured values of ultrasonic velocities obtained 
by ultrasonic pulse velocity technique [1–11]. 

Thermal stability of the alumina based samples can 
be measured using standard water quench test [JUS B. 
D8. 319].

The goal of this work is to use non-destructive test-
ing methods and to show their advantages for pre-
diction of the thermal shock behavior. Destruction of 
samples was analyzed using Image Pro Plus program. 
In this paper correlation between deterioration, ultra-
sonic velocity and strength and the thermal stability of 
the samples were investigated for samples without fi-
bers and for samples with small amount of added fi-
bers. The results were used for validation of the model 
for the prediction of thermal stability behavior of re-
fractory samples.
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II. Experimental

Materials
In this experiment Thermal Ceramics bulk fibres 

were used as reinforcement. They provide good chemi-
cal stability and resistance to chemical attack. To com-
pare with other refractory materials, bulk fibres and 
products made of them are light, resistant to thermal 
shock and they provide low thermal conductivity.

Two series of samples were prepared. Bauxite, 
chamotte and clay were used as raw materials and they 
were mixed in mortar. One series consists of raw ma-
terials without the addition of alumina fibres. Second 
series of samples was prepared using the addition of 
1 wt.% (139.2 µm mean lengths) of alumina fibres (it 
had aspect ratio l/d ≈ 20). The samples were sintered at 
1200°C for 2h. Micrograph of fibres used for prepara-
tion of samples is shown in Fig. 1.

Figure 1. Image of fibres distribution in the sample after 
mixing of fibres and matrix materials

Thermal shock
Thermal stability of the refractories was determined 

experimentally by water quench test (JUS.B.D8.319.). 
Samples were cylinders with 30.0 mm diameter and 
8.0 mm high. In experimental procedure 12 samples 
were used and one sample was selected randomly from 
the set after 4, 8, 12, 16, 20 up to 40 cycles to be exam-
ined using ultrasonic measurements and image analysis. 
The samples were dried at 110°C and then transferred 
into an electric furnace at 950°C and held for 40 min. 
The samples were then quenched into water and left for 
3 min, dried and returned to the furnace at 950°C. This 
procedure was repeated until total destruction of sample 
or destruction of 50 and more percent of surface. The 
number of quenches to failure was taken as a measure 
of thermal shock resistance. 

Photographs of samples were taken and level of de-
struction was monitored using Image Pro Plus program. 
Image Pro Plus program was used to measure the fiber 
lengths distribution, homogeneity of fiber distribution 

in the matrix and finally the measurement during ther-
mal stability testing.
Image analysis

Image analysis was performed on samples after sin-
tering and on samples exposed to defined number of 
quench experiments. The surface of the specimen was 
coloured with blue chalk in order to enable determina-
tion of non-damaged and damaged surfaces. The imag-
es were treated in the Image Pro Plus program. The pro-
gram gives possibility to select parts of the image that 
are coloured in a defined colour and this was used to 
separate damaged and non-damaged surface.
Ultrasonic determination of dynamic Young modulus 
of elasticity

The ultrasonic velocity was measured with the OYO 
model 5210 according to the standard testing (JUS. D. 
B8. 121). The transducers were rigidly placed on the 
two parallel faces of the cylindrical sample having 30.0 
mm diameter and 8.0 mm height using petroleum jel-
ly as the coupling medium. The ultrasonic velocity was 
then calculated from the spacing of the transducers and 
the wave from time delay on the oscilloscope. Dynam-
ic Young’s modulus was calculated using the expression 
[12–15]:

      1

where VL is the velocity of longitudinal waves (m/s), µdyn 
the dynamic Poisson ratio and ρ is density (kg/m3).

III. Results and Discussion

Image analysis
Simple visual inspection shows that samples do not 

exhibit total destruction during test procedure until 40 
cycles. Samples without fibres after 4, 8 and 12 quench 
cycles are presented in Fig. 2 together with the sample 
that was not at all exposed to quenching.

Images of samples with 1 wt. % (139.2 µm mean 
lengths) of fibres (l/d = 20) after 4, 8 and 12 quench cy-
cles are presented in Fig. 3 together with the sample that 
was not at all exposed to quenching.

In this study image analysis was used for the deter-
mination of surface damage level before and after a de-
fined numbers of quenches. Ratio of increase of surface 
damage to the original surface was chosen as the pa-
rameter for surface damage characterisation. The ratio 
changes after every quenching experiment and this is 
shown in Fig. 4.
Ultrasonic determination of dynamic Young modulus 
of elasticity

Results for ultrasonic velocity and dynamic Young’s 
modulus of samples are presented in Fig. 5 and Fig. 6 
for samples without fibres and samples with 1 wt.% of 
fibres.
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The samples with 1 wt.% of fibres have higher 
Young’s modulus of elasticity therefore these samples 
have higher strength.

For calculation of compressive strength degrada-
tion, equation based on decrease in ultrasonic velocity 
was used [12–15]:

      2

where σo is compressive strength before exposure of the 
material to the thermal shock testing, VL the longitudi-
nal velocity after testing, VL0 the longitudinal velocity 
before testing and n is the material constant (n = 0.488). 
This equation was used for calculation with longitu-
dinal and transversal ultrasonic wave’s velocities. De-
crease in strengths is about 20 % of the original value 

Figure 4. Damage surface level (P) vs. number of quench
experiments (N)

Figure 2. Samples without fibres before and during testing

Figure 3. Samples with 1 wt.% of (139.2 µm mean lengths) fibres before and during testing

0 cycles 4 cycles 8 cycles 12 cycles

0 cycles 4 cycles 8 cycles 12 cycles

Figure 5. Values of ultrasonic velocity (v) during testing (longitudinal VL and transversal VT) vs. number of quenching
experiments N of: a) samples without fibres and b) samples with 1 wt. % of fibres

a) b)
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for both specimens. However, the initial strengths val-
ue for specimens with 1 wt.% fibres were higher than 
for specimens without fibres and the samples at the end 
of the procedure have better characteristics than those 
without fibres. Results for strength of samples without 
fibres and samples with 1 wt.% of fibres are presented 
in Fig. 7.

IV. Conclusions
Different tests were performed to investigate ther-

mal stability behaviour of samples. Samples were sta-
ble till 40 cycles of quench tests and these materials 
are very promising for the applications where thermal 
shock resistance is required. The goal of this paper was 
to determine thermal stability resistance and strength of 
alumina composites, as well as influence of fibres to the 
material behaviour. Samples with 1 wt.% of fibres have 
lower surface damage level and higher Young modulus 
of elasticity then samples without fibres.
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